|
|
@ -16,14 +16,22 @@ import numpy as np
|
|
|
|
from deepspeech.frontend.utility import IGNORE_ID
|
|
|
|
from deepspeech.frontend.utility import IGNORE_ID
|
|
|
|
from deepspeech.io.utility import pad_sequence
|
|
|
|
from deepspeech.io.utility import pad_sequence
|
|
|
|
from deepspeech.utils.log import Log
|
|
|
|
from deepspeech.utils.log import Log
|
|
|
|
|
|
|
|
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
|
|
|
|
|
|
|
|
from deepspeech.frontend.featurizer.speech_featurizer import SpeechFeaturizer
|
|
|
|
|
|
|
|
from deepspeech.frontend.normalizer import FeatureNormalizer
|
|
|
|
|
|
|
|
from deepspeech.frontend.speech import SpeechSegment
|
|
|
|
|
|
|
|
import io
|
|
|
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ["SpeechCollator"]
|
|
|
|
__all__ = ["SpeechCollator"]
|
|
|
|
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# namedtupe need global for pickle.
|
|
|
|
|
|
|
|
TarLocalData = namedtuple('TarLocalData', ['tar2info', 'tar2object'])
|
|
|
|
|
|
|
|
|
|
|
|
class SpeechCollator():
|
|
|
|
class SpeechCollator():
|
|
|
|
def __init__(self, keep_transcription_text=True):
|
|
|
|
def __init__(self, config, keep_transcription_text=True):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Padding audio features with zeros to make them have the same shape (or
|
|
|
|
Padding audio features with zeros to make them have the same shape (or
|
|
|
|
a user-defined shape) within one bach.
|
|
|
|
a user-defined shape) within one bach.
|
|
|
@ -32,6 +40,112 @@ class SpeechCollator():
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
self._keep_transcription_text = keep_transcription_text
|
|
|
|
self._keep_transcription_text = keep_transcription_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(config.data.augmentation_config, (str, bytes)):
|
|
|
|
|
|
|
|
if config.data.augmentation_config:
|
|
|
|
|
|
|
|
aug_file = io.open(
|
|
|
|
|
|
|
|
config.data.augmentation_config, mode='r', encoding='utf8')
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
aug_file = io.StringIO(initial_value='{}', newline='')
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
aug_file = config.data.augmentation_config
|
|
|
|
|
|
|
|
assert isinstance(aug_file, io.StringIO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._local_data = TarLocalData(tar2info={}, tar2object={})
|
|
|
|
|
|
|
|
self._augmentation_pipeline = AugmentationPipeline(
|
|
|
|
|
|
|
|
augmentation_config=aug_file.read(),
|
|
|
|
|
|
|
|
random_seed=config.data.random_seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._normalizer = FeatureNormalizer(
|
|
|
|
|
|
|
|
config.data.mean_std_filepath) if config.data.mean_std_filepath else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._stride_ms = config.data.stride_ms
|
|
|
|
|
|
|
|
self._target_sample_rate = config.data.target_sample_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._speech_featurizer = SpeechFeaturizer(
|
|
|
|
|
|
|
|
unit_type=config.data.unit_type,
|
|
|
|
|
|
|
|
vocab_filepath=config.data.vocab_filepath,
|
|
|
|
|
|
|
|
spm_model_prefix=config.data.spm_model_prefix,
|
|
|
|
|
|
|
|
specgram_type=config.data.specgram_type,
|
|
|
|
|
|
|
|
feat_dim=config.data.feat_dim,
|
|
|
|
|
|
|
|
delta_delta=config.data.delta_delta,
|
|
|
|
|
|
|
|
stride_ms=config.data.stride_ms,
|
|
|
|
|
|
|
|
window_ms=config.data.window_ms,
|
|
|
|
|
|
|
|
n_fft=config.data.n_fft,
|
|
|
|
|
|
|
|
max_freq=config.data.max_freq,
|
|
|
|
|
|
|
|
target_sample_rate=config.data.target_sample_rate,
|
|
|
|
|
|
|
|
use_dB_normalization=config.data.use_dB_normalization,
|
|
|
|
|
|
|
|
target_dB=config.data.target_dB,
|
|
|
|
|
|
|
|
dither=config.data.dither)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_tar(self, file):
|
|
|
|
|
|
|
|
"""Parse a tar file to get a tarfile object
|
|
|
|
|
|
|
|
and a map containing tarinfoes
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
result = {}
|
|
|
|
|
|
|
|
f = tarfile.open(file)
|
|
|
|
|
|
|
|
for tarinfo in f.getmembers():
|
|
|
|
|
|
|
|
result[tarinfo.name] = tarinfo
|
|
|
|
|
|
|
|
return f, result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _subfile_from_tar(self, file):
|
|
|
|
|
|
|
|
"""Get subfile object from tar.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
It will return a subfile object from tar file
|
|
|
|
|
|
|
|
and cached tar file info for next reading request.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
tarpath, filename = file.split(':', 1)[1].split('#', 1)
|
|
|
|
|
|
|
|
if 'tar2info' not in self._local_data.__dict__:
|
|
|
|
|
|
|
|
self._local_data.tar2info = {}
|
|
|
|
|
|
|
|
if 'tar2object' not in self._local_data.__dict__:
|
|
|
|
|
|
|
|
self._local_data.tar2object = {}
|
|
|
|
|
|
|
|
if tarpath not in self._local_data.tar2info:
|
|
|
|
|
|
|
|
object, infoes = self._parse_tar(tarpath)
|
|
|
|
|
|
|
|
self._local_data.tar2info[tarpath] = infoes
|
|
|
|
|
|
|
|
self._local_data.tar2object[tarpath] = object
|
|
|
|
|
|
|
|
return self._local_data.tar2object[tarpath].extractfile(
|
|
|
|
|
|
|
|
self._local_data.tar2info[tarpath][filename])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_utterance(self, audio_file, transcript):
|
|
|
|
|
|
|
|
"""Load, augment, featurize and normalize for speech data.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:param audio_file: Filepath or file object of audio file.
|
|
|
|
|
|
|
|
:type audio_file: str | file
|
|
|
|
|
|
|
|
:param transcript: Transcription text.
|
|
|
|
|
|
|
|
:type transcript: str
|
|
|
|
|
|
|
|
:return: Tuple of audio feature tensor and data of transcription part,
|
|
|
|
|
|
|
|
where transcription part could be token ids or text.
|
|
|
|
|
|
|
|
:rtype: tuple of (2darray, list)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
if isinstance(audio_file, str) and audio_file.startswith('tar:'):
|
|
|
|
|
|
|
|
speech_segment = SpeechSegment.from_file(
|
|
|
|
|
|
|
|
self._subfile_from_tar(audio_file), transcript)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
speech_segment = SpeechSegment.from_file(audio_file, transcript)
|
|
|
|
|
|
|
|
load_wav_time = time.time() - start_time
|
|
|
|
|
|
|
|
#logger.debug(f"load wav time: {load_wav_time}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# audio augment
|
|
|
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
self._augmentation_pipeline.transform_audio(speech_segment)
|
|
|
|
|
|
|
|
audio_aug_time = time.time() - start_time
|
|
|
|
|
|
|
|
#logger.debug(f"audio augmentation time: {audio_aug_time}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
specgram, transcript_part = self._speech_featurizer.featurize(
|
|
|
|
|
|
|
|
speech_segment, self._keep_transcription_text)
|
|
|
|
|
|
|
|
if self._normalizer:
|
|
|
|
|
|
|
|
specgram = self._normalizer.apply(specgram)
|
|
|
|
|
|
|
|
feature_time = time.time() - start_time
|
|
|
|
|
|
|
|
#logger.debug(f"audio & test feature time: {feature_time}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# specgram augment
|
|
|
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
specgram = self._augmentation_pipeline.transform_feature(specgram)
|
|
|
|
|
|
|
|
feature_aug_time = time.time() - start_time
|
|
|
|
|
|
|
|
#logger.debug(f"audio feature augmentation time: {feature_aug_time}")
|
|
|
|
|
|
|
|
return specgram, transcript_part
|
|
|
|
|
|
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
|
def __call__(self, batch):
|
|
|
|
"""batch examples
|
|
|
|
"""batch examples
|
|
|
|
|
|
|
|
|
|
|
@ -53,6 +167,7 @@ class SpeechCollator():
|
|
|
|
text_lens = []
|
|
|
|
text_lens = []
|
|
|
|
utts = []
|
|
|
|
utts = []
|
|
|
|
for utt, audio, text in batch:
|
|
|
|
for utt, audio, text in batch:
|
|
|
|
|
|
|
|
audio, text = self.process_utterance(audio, text)
|
|
|
|
#utt
|
|
|
|
#utt
|
|
|
|
utts.append(utt)
|
|
|
|
utts.append(utt)
|
|
|
|
# audio
|
|
|
|
# audio
|
|
|
|