|
|
@ -38,6 +38,7 @@ from deepspeech.io.sampler import SortagradDistributedBatchSampler
|
|
|
|
from deepspeech.models.u2_st import U2STModel
|
|
|
|
from deepspeech.models.u2_st import U2STModel
|
|
|
|
from deepspeech.training.gradclip import ClipGradByGlobalNormWithLog
|
|
|
|
from deepspeech.training.gradclip import ClipGradByGlobalNormWithLog
|
|
|
|
from deepspeech.training.scheduler import WarmupLR
|
|
|
|
from deepspeech.training.scheduler import WarmupLR
|
|
|
|
|
|
|
|
from deepspeech.training.timer import Timer
|
|
|
|
from deepspeech.training.trainer import Trainer
|
|
|
|
from deepspeech.training.trainer import Trainer
|
|
|
|
from deepspeech.utils import bleu_score
|
|
|
|
from deepspeech.utils import bleu_score
|
|
|
|
from deepspeech.utils import ctc_utils
|
|
|
|
from deepspeech.utils import ctc_utils
|
|
|
@ -207,35 +208,37 @@ class U2STTrainer(Trainer):
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
|
|
|
|
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
|
|
|
|
while self.epoch < self.config.training.n_epoch:
|
|
|
|
while self.epoch < self.config.training.n_epoch:
|
|
|
|
self.model.train()
|
|
|
|
with Timer("Epoch-Train Time Cost: {}"):
|
|
|
|
try:
|
|
|
|
self.model.train()
|
|
|
|
data_start_time = time.time()
|
|
|
|
try:
|
|
|
|
for batch_index, batch in enumerate(self.train_loader):
|
|
|
|
|
|
|
|
dataload_time = time.time() - data_start_time
|
|
|
|
|
|
|
|
msg = "Train: Rank: {}, ".format(dist.get_rank())
|
|
|
|
|
|
|
|
msg += "epoch: {}, ".format(self.epoch)
|
|
|
|
|
|
|
|
msg += "step: {}, ".format(self.iteration)
|
|
|
|
|
|
|
|
msg += "batch : {}/{}, ".format(batch_index + 1,
|
|
|
|
|
|
|
|
len(self.train_loader))
|
|
|
|
|
|
|
|
msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
|
|
|
|
|
|
|
|
msg += "data time: {:>.3f}s, ".format(dataload_time)
|
|
|
|
|
|
|
|
self.train_batch(batch_index, batch, msg)
|
|
|
|
|
|
|
|
data_start_time = time.time()
|
|
|
|
data_start_time = time.time()
|
|
|
|
except Exception as e:
|
|
|
|
for batch_index, batch in enumerate(self.train_loader):
|
|
|
|
logger.error(e)
|
|
|
|
dataload_time = time.time() - data_start_time
|
|
|
|
raise e
|
|
|
|
msg = "Train: Rank: {}, ".format(dist.get_rank())
|
|
|
|
|
|
|
|
msg += "epoch: {}, ".format(self.epoch)
|
|
|
|
total_loss, num_seen_utts = self.valid()
|
|
|
|
msg += "step: {}, ".format(self.iteration)
|
|
|
|
if dist.get_world_size() > 1:
|
|
|
|
msg += "batch : {}/{}, ".format(batch_index + 1,
|
|
|
|
num_seen_utts = paddle.to_tensor(num_seen_utts)
|
|
|
|
len(self.train_loader))
|
|
|
|
# the default operator in all_reduce function is sum.
|
|
|
|
msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
|
|
|
|
dist.all_reduce(num_seen_utts)
|
|
|
|
msg += "data time: {:>.3f}s, ".format(dataload_time)
|
|
|
|
total_loss = paddle.to_tensor(total_loss)
|
|
|
|
self.train_batch(batch_index, batch, msg)
|
|
|
|
dist.all_reduce(total_loss)
|
|
|
|
data_start_time = time.time()
|
|
|
|
cv_loss = total_loss / num_seen_utts
|
|
|
|
except Exception as e:
|
|
|
|
cv_loss = float(cv_loss)
|
|
|
|
logger.error(e)
|
|
|
|
else:
|
|
|
|
raise e
|
|
|
|
cv_loss = total_loss / num_seen_utts
|
|
|
|
|
|
|
|
|
|
|
|
with Timer("Eval Time Cost: {}"):
|
|
|
|
|
|
|
|
total_loss, num_seen_utts = self.valid()
|
|
|
|
|
|
|
|
if dist.get_world_size() > 1:
|
|
|
|
|
|
|
|
num_seen_utts = paddle.to_tensor(num_seen_utts)
|
|
|
|
|
|
|
|
# the default operator in all_reduce function is sum.
|
|
|
|
|
|
|
|
dist.all_reduce(num_seen_utts)
|
|
|
|
|
|
|
|
total_loss = paddle.to_tensor(total_loss)
|
|
|
|
|
|
|
|
dist.all_reduce(total_loss)
|
|
|
|
|
|
|
|
cv_loss = total_loss / num_seen_utts
|
|
|
|
|
|
|
|
cv_loss = float(cv_loss)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
cv_loss = total_loss / num_seen_utts
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(
|
|
|
|
logger.info(
|
|
|
|
'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
|
|
|
|
'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
|
|
|
|