|
|
|
@ -3,13 +3,13 @@
|
|
|
|
|
# Copyright 2018 Mitsubishi Electric Research Labs (Takaaki Hori)
|
|
|
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import six
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CTCPrefixScoreTH():
|
|
|
|
|
class CTCPrefixScorePD():
|
|
|
|
|
"""Batch processing of CTCPrefixScore
|
|
|
|
|
|
|
|
|
|
which is based on Algorithm 2 in WATANABE et al.
|
|
|
|
@ -23,8 +23,10 @@ class CTCPrefixScoreTH():
|
|
|
|
|
def __init__(self, x, xlens, blank, eos, margin=0):
|
|
|
|
|
"""Construct CTC prefix scorer
|
|
|
|
|
|
|
|
|
|
:param torch.Tensor x: input label posterior sequences (B, T, O)
|
|
|
|
|
:param torch.Tensor xlens: input lengths (B,)
|
|
|
|
|
`margin` is M in eq.(22,23)
|
|
|
|
|
|
|
|
|
|
:param paddle.Tensor x: input label posterior sequences (B, T, O)
|
|
|
|
|
:param paddle.Tensor xlens: input lengths (B,)
|
|
|
|
|
:param int blank: blank label id
|
|
|
|
|
:param int eos: end-of-sequence id
|
|
|
|
|
:param int margin: margin parameter for windowing (0 means no windowing)
|
|
|
|
@ -38,11 +40,8 @@ class CTCPrefixScoreTH():
|
|
|
|
|
self.input_length = x.size(1)
|
|
|
|
|
self.odim = x.size(2)
|
|
|
|
|
self.dtype = x.dtype
|
|
|
|
|
self.device = (
|
|
|
|
|
torch.device("cuda:%d" % x.get_device())
|
|
|
|
|
if x.is_cuda
|
|
|
|
|
else torch.device("cpu")
|
|
|
|
|
)
|
|
|
|
|
self.device = x.place
|
|
|
|
|
|
|
|
|
|
# Pad the rest of posteriors in the batch
|
|
|
|
|
# TODO(takaaki-hori): need a better way without for-loops
|
|
|
|
|
for i, l in enumerate(xlens):
|
|
|
|
@ -50,20 +49,21 @@ class CTCPrefixScoreTH():
|
|
|
|
|
x[i, l:, :] = self.logzero
|
|
|
|
|
x[i, l:, blank] = 0
|
|
|
|
|
# Reshape input x
|
|
|
|
|
xn = x.transpose(0, 1) # (B, T, O) -> (T, B, O)
|
|
|
|
|
xb = xn[:, :, self.blank].unsqueeze(2).expand(-1, -1, self.odim)
|
|
|
|
|
self.x = torch.stack([xn, xb]) # (2, T, B, O)
|
|
|
|
|
self.end_frames = torch.as_tensor(xlens) - 1
|
|
|
|
|
xn = x.transpose([1, 0, 2]) # (B, T, O) -> (T, B, O)
|
|
|
|
|
xb = xn[:, :, self.blank].unsqueeze(2).expand(-1, -1, self.odim) # (T,B,O)
|
|
|
|
|
self.x = paddle.stack([xn, xb]) # (2, T, B, O)
|
|
|
|
|
self.end_frames = paddle.to_tensor(xlens) - 1 # (B,)
|
|
|
|
|
|
|
|
|
|
# Setup CTC windowing
|
|
|
|
|
self.margin = margin
|
|
|
|
|
if margin > 0:
|
|
|
|
|
self.frame_ids = torch.arange(
|
|
|
|
|
self.input_length, dtype=self.dtype, device=self.device
|
|
|
|
|
)
|
|
|
|
|
self.frame_ids = paddle.arange(self.input_length, dtype=self.dtype)
|
|
|
|
|
# Base indices for index conversion
|
|
|
|
|
self.idx_bh = None
|
|
|
|
|
self.idx_b = torch.arange(self.batch, device=self.device)
|
|
|
|
|
# B idx, hyp idx. shape (B*W, 1)
|
|
|
|
|
self.idx_bh = None
|
|
|
|
|
# B idx. shape (B,)
|
|
|
|
|
self.idx_b = paddle.arange(self.batch, place=self.device)
|
|
|
|
|
# B idx, O idx. shape (B, 1)
|
|
|
|
|
self.idx_bo = (self.idx_b * self.odim).unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
def __call__(self, y, state, scoring_ids=None, att_w=None):
|
|
|
|
@ -71,8 +71,8 @@ class CTCPrefixScoreTH():
|
|
|
|
|
|
|
|
|
|
:param list y: prefix label sequences
|
|
|
|
|
:param tuple state: previous CTC state
|
|
|
|
|
:param torch.Tensor pre_scores: scores for pre-selection of hypotheses (BW, O)
|
|
|
|
|
:param torch.Tensor att_w: attention weights to decide CTC window
|
|
|
|
|
:param paddle.Tensor scoring_ids: selected next ids to score (BW, O'), O' <= O
|
|
|
|
|
:param paddle.Tensor att_w: attention weights to decide CTC window
|
|
|
|
|
:return new_state, ctc_local_scores (BW, O)
|
|
|
|
|
"""
|
|
|
|
|
output_length = len(y[0]) - 1 # ignore sos
|
|
|
|
@ -82,56 +82,53 @@ class CTCPrefixScoreTH():
|
|
|
|
|
self.scoring_num = scoring_ids.size(-1) if scoring_ids is not None else 0
|
|
|
|
|
# prepare state info
|
|
|
|
|
if state is None:
|
|
|
|
|
r_prev = torch.full(
|
|
|
|
|
r_prev = paddle.full(
|
|
|
|
|
(self.input_length, 2, self.batch, n_hyps),
|
|
|
|
|
self.logzero,
|
|
|
|
|
dtype=self.dtype,
|
|
|
|
|
device=self.device,
|
|
|
|
|
)
|
|
|
|
|
r_prev[:, 1] = torch.cumsum(self.x[0, :, :, self.blank], 0).unsqueeze(2)
|
|
|
|
|
r_prev = r_prev.view(-1, 2, n_bh)
|
|
|
|
|
s_prev = 0.0
|
|
|
|
|
f_min_prev = 0
|
|
|
|
|
f_max_prev = 1
|
|
|
|
|
) # (T, 2, B, W)
|
|
|
|
|
r_prev[:, 1] = paddle.cumsum(self.x[0, :, :, self.blank], 0).unsqueeze(2)
|
|
|
|
|
r_prev = r_prev.view(-1, 2, n_bh) # (T, 2, BW)
|
|
|
|
|
s_prev = 0.0 # score
|
|
|
|
|
f_min_prev = 0 # eq. 22-23
|
|
|
|
|
f_max_prev = 1 # eq. 22-23
|
|
|
|
|
else:
|
|
|
|
|
r_prev, s_prev, f_min_prev, f_max_prev = state
|
|
|
|
|
|
|
|
|
|
# select input dimensions for scoring
|
|
|
|
|
if self.scoring_num > 0:
|
|
|
|
|
scoring_idmap = torch.full(
|
|
|
|
|
(n_bh, self.odim), -1, dtype=torch.long, device=self.device
|
|
|
|
|
)
|
|
|
|
|
# (BW, O)
|
|
|
|
|
scoring_idmap = paddle.full((n_bh, self.odim), -1, dtype=paddle.long)
|
|
|
|
|
snum = self.scoring_num
|
|
|
|
|
if self.idx_bh is None or n_bh > len(self.idx_bh):
|
|
|
|
|
self.idx_bh = torch.arange(n_bh, device=self.device).view(-1, 1)
|
|
|
|
|
scoring_idmap[self.idx_bh[:n_bh], scoring_ids] = torch.arange(
|
|
|
|
|
snum, device=self.device
|
|
|
|
|
)
|
|
|
|
|
self.idx_bh = paddle.arange(n_bh).view(-1, 1) # (BW, 1)
|
|
|
|
|
scoring_idmap[self.idx_bh[:n_bh], scoring_ids] = paddle.arange(snum)
|
|
|
|
|
scoring_idx = (
|
|
|
|
|
scoring_ids + self.idx_bo.repeat(1, n_hyps).view(-1, 1)
|
|
|
|
|
).view(-1)
|
|
|
|
|
x_ = torch.index_select(
|
|
|
|
|
self.x.view(2, -1, self.batch * self.odim), 2, scoring_idx
|
|
|
|
|
scoring_ids + self.idx_bo.repeat(1, n_hyps).view(-1, 1) # (BW,1)
|
|
|
|
|
).view(-1) # (BWO)
|
|
|
|
|
# x_ shape (2, T, B*W, O)
|
|
|
|
|
x_ = paddle.index_select(
|
|
|
|
|
self.x.view(2, -1, self.batch * self.odim), scoring_idx, 2
|
|
|
|
|
).view(2, -1, n_bh, snum)
|
|
|
|
|
else:
|
|
|
|
|
scoring_ids = None
|
|
|
|
|
scoring_idmap = None
|
|
|
|
|
snum = self.odim
|
|
|
|
|
# x_ shape (2, T, B*W, O)
|
|
|
|
|
x_ = self.x.unsqueeze(3).repeat(1, 1, 1, n_hyps, 1).view(2, -1, n_bh, snum)
|
|
|
|
|
|
|
|
|
|
# new CTC forward probs are prepared as a (T x 2 x BW x S) tensor
|
|
|
|
|
# that corresponds to r_t^n(h) and r_t^b(h) in a batch.
|
|
|
|
|
r = torch.full(
|
|
|
|
|
r = paddle.full(
|
|
|
|
|
(self.input_length, 2, n_bh, snum),
|
|
|
|
|
self.logzero,
|
|
|
|
|
dtype=self.dtype,
|
|
|
|
|
device=self.device,
|
|
|
|
|
)
|
|
|
|
|
if output_length == 0:
|
|
|
|
|
r[0, 0] = x_[0, 0]
|
|
|
|
|
|
|
|
|
|
r_sum = torch.logsumexp(r_prev, 1)
|
|
|
|
|
log_phi = r_sum.unsqueeze(2).repeat(1, 1, snum)
|
|
|
|
|
r_sum = paddle.logsumexp(r_prev, 1) #(T,BW)
|
|
|
|
|
log_phi = r_sum.unsqueeze(2).repeat(1, 1, snum) # (T, BW, O)
|
|
|
|
|
if scoring_ids is not None:
|
|
|
|
|
for idx in range(n_bh):
|
|
|
|
|
pos = scoring_idmap[idx, last_ids[idx]]
|
|
|
|
@ -143,40 +140,39 @@ class CTCPrefixScoreTH():
|
|
|
|
|
|
|
|
|
|
# decide start and end frames based on attention weights
|
|
|
|
|
if att_w is not None and self.margin > 0:
|
|
|
|
|
f_arg = torch.matmul(att_w, self.frame_ids)
|
|
|
|
|
f_arg = paddle.matmul(att_w, self.frame_ids)
|
|
|
|
|
f_min = max(int(f_arg.min().cpu()), f_min_prev)
|
|
|
|
|
f_max = max(int(f_arg.max().cpu()), f_max_prev)
|
|
|
|
|
start = min(f_max_prev, max(f_min - self.margin, output_length, 1))
|
|
|
|
|
end = min(f_max + self.margin, self.input_length)
|
|
|
|
|
else:
|
|
|
|
|
f_min = f_max = 0
|
|
|
|
|
# if one frame one out, the output_length is the eating frame num now.
|
|
|
|
|
start = max(output_length, 1)
|
|
|
|
|
end = self.input_length
|
|
|
|
|
|
|
|
|
|
# compute forward probabilities log(r_t^n(h)) and log(r_t^b(h))
|
|
|
|
|
for t in range(start, end):
|
|
|
|
|
rp = r[t - 1]
|
|
|
|
|
rr = torch.stack([rp[0], log_phi[t - 1], rp[0], rp[1]]).view(
|
|
|
|
|
rp = r[t - 1] # (2 x BW x O')
|
|
|
|
|
rr = paddle.stack([rp[0], log_phi[t - 1], rp[0], rp[1]]).view(
|
|
|
|
|
2, 2, n_bh, snum
|
|
|
|
|
)
|
|
|
|
|
r[t] = torch.logsumexp(rr, 1) + x_[:, t]
|
|
|
|
|
) # (2,2,BW,O')
|
|
|
|
|
r[t] = paddle.logsumexp(rr, 1) + x_[:, t]
|
|
|
|
|
|
|
|
|
|
# compute log prefix probabilities log(psi)
|
|
|
|
|
log_phi_x = torch.cat((log_phi[0].unsqueeze(0), log_phi[:-1]), dim=0) + x_[0]
|
|
|
|
|
log_phi_x = paddle.concat((log_phi[0].unsqueeze(0), log_phi[:-1]), axis=0) + x_[0]
|
|
|
|
|
if scoring_ids is not None:
|
|
|
|
|
log_psi = torch.full(
|
|
|
|
|
(n_bh, self.odim), self.logzero, dtype=self.dtype, device=self.device
|
|
|
|
|
)
|
|
|
|
|
log_psi_ = torch.logsumexp(
|
|
|
|
|
torch.cat((log_phi_x[start:end], r[start - 1, 0].unsqueeze(0)), dim=0),
|
|
|
|
|
dim=0,
|
|
|
|
|
log_psi = paddle.full((n_bh, self.odim), self.logzero, dtype=self.dtype)
|
|
|
|
|
log_psi_ = paddle.logsumexp(
|
|
|
|
|
paddle.concat((log_phi_x[start:end], r[start - 1, 0].unsqueeze(0)), axis=0),
|
|
|
|
|
axis=0,
|
|
|
|
|
)
|
|
|
|
|
for si in range(n_bh):
|
|
|
|
|
log_psi[si, scoring_ids[si]] = log_psi_[si]
|
|
|
|
|
else:
|
|
|
|
|
log_psi = torch.logsumexp(
|
|
|
|
|
torch.cat((log_phi_x[start:end], r[start - 1, 0].unsqueeze(0)), dim=0),
|
|
|
|
|
dim=0,
|
|
|
|
|
log_psi = paddle.logsumexp(
|
|
|
|
|
paddle.concat((log_phi_x[start:end], r[start - 1, 0].unsqueeze(0)), axis=0),
|
|
|
|
|
axis=0,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
for si in range(n_bh):
|
|
|
|
@ -200,7 +196,7 @@ class CTCPrefixScoreTH():
|
|
|
|
|
n_hyps = n_bh // self.batch
|
|
|
|
|
vidx = (best_ids + (self.idx_b * (n_hyps * self.odim)).view(-1, 1)).view(-1)
|
|
|
|
|
# select hypothesis scores
|
|
|
|
|
s_new = torch.index_select(s.view(-1), 0, vidx)
|
|
|
|
|
s_new = paddle.index_select(s.view(-1), vidx, 0)
|
|
|
|
|
s_new = s_new.view(-1, 1).repeat(1, self.odim).view(n_bh, self.odim)
|
|
|
|
|
# convert ids to BHS space (S: scoring_num)
|
|
|
|
|
if scoring_idmap is not None:
|
|
|
|
@ -208,14 +204,14 @@ class CTCPrefixScoreTH():
|
|
|
|
|
hyp_idx = (best_ids // self.odim + (self.idx_b * n_hyps).view(-1, 1)).view(
|
|
|
|
|
-1
|
|
|
|
|
)
|
|
|
|
|
label_ids = torch.fmod(best_ids, self.odim).view(-1)
|
|
|
|
|
label_ids = paddle.fmod(best_ids, self.odim).view(-1)
|
|
|
|
|
score_idx = scoring_idmap[hyp_idx, label_ids]
|
|
|
|
|
score_idx[score_idx == -1] = 0
|
|
|
|
|
vidx = score_idx + hyp_idx * snum
|
|
|
|
|
else:
|
|
|
|
|
snum = self.odim
|
|
|
|
|
# select forward probabilities
|
|
|
|
|
r_new = torch.index_select(r.view(-1, 2, n_bh * snum), 2, vidx).view(
|
|
|
|
|
r_new = paddle.index_select(r.view(-1, 2, n_bh * snum), vidx, 2).view(
|
|
|
|
|
-1, 2, n_bh
|
|
|
|
|
)
|
|
|
|
|
return r_new, s_new, f_min, f_max
|
|
|
|
@ -223,7 +219,7 @@ class CTCPrefixScoreTH():
|
|
|
|
|
def extend_prob(self, x):
|
|
|
|
|
"""Extend CTC prob.
|
|
|
|
|
|
|
|
|
|
:param torch.Tensor x: input label posterior sequences (B, T, O)
|
|
|
|
|
:param paddle.Tensor x: input label posterior sequences (B, T, O)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if self.x.shape[1] < x.shape[1]: # self.x (2,T,B,O); x (B,T,O)
|
|
|
|
@ -235,12 +231,12 @@ class CTCPrefixScoreTH():
|
|
|
|
|
x[i, l:, :] = self.logzero
|
|
|
|
|
x[i, l:, self.blank] = 0
|
|
|
|
|
tmp_x = self.x
|
|
|
|
|
xn = x.transpose(0, 1) # (B, T, O) -> (T, B, O)
|
|
|
|
|
xn = x.transpose([1, 0, 2]) # (B, T, O) -> (T, B, O)
|
|
|
|
|
xb = xn[:, :, self.blank].unsqueeze(2).expand(-1, -1, self.odim)
|
|
|
|
|
self.x = torch.stack([xn, xb]) # (2, T, B, O)
|
|
|
|
|
self.x = paddle.stack([xn, xb]) # (2, T, B, O)
|
|
|
|
|
self.x[:, : tmp_x.shape[1], :, :] = tmp_x
|
|
|
|
|
self.input_length = x.size(1)
|
|
|
|
|
self.end_frames = torch.as_tensor(xlens) - 1
|
|
|
|
|
self.end_frames = paddle.to_tensor(xlens) - 1
|
|
|
|
|
|
|
|
|
|
def extend_state(self, state):
|
|
|
|
|
"""Compute CTC prefix state.
|
|
|
|
@ -256,15 +252,14 @@ class CTCPrefixScoreTH():
|
|
|
|
|
else:
|
|
|
|
|
r_prev, s_prev, f_min_prev, f_max_prev = state
|
|
|
|
|
|
|
|
|
|
r_prev_new = torch.full(
|
|
|
|
|
r_prev_new = paddle.full(
|
|
|
|
|
(self.input_length, 2),
|
|
|
|
|
self.logzero,
|
|
|
|
|
dtype=self.dtype,
|
|
|
|
|
device=self.device,
|
|
|
|
|
)
|
|
|
|
|
start = max(r_prev.shape[0], 1)
|
|
|
|
|
r_prev_new[0:start] = r_prev
|
|
|
|
|
for t in six.moves.range(start, self.input_length):
|
|
|
|
|
for t in range(start, self.input_length):
|
|
|
|
|
r_prev_new[t, 1] = r_prev_new[t - 1, 1] + self.x[0, t, :, self.blank]
|
|
|
|
|
|
|
|
|
|
return (r_prev_new, s_prev, f_min_prev, f_max_prev)
|
|
|
|
@ -285,7 +280,7 @@ class CTCPrefixScore():
|
|
|
|
|
self.blank = blank
|
|
|
|
|
self.eos = eos
|
|
|
|
|
self.input_length = len(x)
|
|
|
|
|
self.x = x
|
|
|
|
|
self.x = x # (T, O)
|
|
|
|
|
|
|
|
|
|
def initial_state(self):
|
|
|
|
|
"""Obtain an initial CTC state
|
|
|
|
@ -295,6 +290,7 @@ class CTCPrefixScore():
|
|
|
|
|
# initial CTC state is made of a frame x 2 tensor that corresponds to
|
|
|
|
|
# r_t^n(<sos>) and r_t^b(<sos>), where 0 and 1 of axis=1 represent
|
|
|
|
|
# superscripts n and b (non-blank and blank), respectively.
|
|
|
|
|
# r shape (T, 2)
|
|
|
|
|
r = self.xp.full((self.input_length, 2), self.logzero, dtype=np.float32)
|
|
|
|
|
r[0, 1] = self.x[0, self.blank]
|
|
|
|
|
for i in six.moves.range(1, self.input_length):
|
|
|
|
@ -313,6 +309,7 @@ class CTCPrefixScore():
|
|
|
|
|
output_length = len(y) - 1 # ignore sos
|
|
|
|
|
# new CTC states are prepared as a frame x (n or b) x n_labels tensor
|
|
|
|
|
# that corresponds to r_t^n(h) and r_t^b(h).
|
|
|
|
|
# r shape (T, 2, n_labels)
|
|
|
|
|
r = self.xp.ndarray((self.input_length, 2, len(cs)), dtype=np.float32)
|
|
|
|
|
xs = self.x[:, cs]
|
|
|
|
|
if output_length == 0:
|
|
|
|
@ -356,4 +353,5 @@ class CTCPrefixScore():
|
|
|
|
|
|
|
|
|
|
# return the log prefix probability and CTC states, where the label axis
|
|
|
|
|
# of the CTC states is moved to the first axis to slice it easily
|
|
|
|
|
# log_psi shape (n_labels,), state shape (n_labels, T, 2)
|
|
|
|
|
return log_psi, self.xp.rollaxis(r, 2)
|
|
|
|
|