commit
20d88ec673
@ -0,0 +1,14 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .infer import CLSExecutor
|
@ -0,0 +1,260 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import yaml
|
||||
|
||||
from ..executor import BaseExecutor
|
||||
from ..utils import cli_register
|
||||
from ..utils import download_and_decompress
|
||||
from ..utils import logger
|
||||
from ..utils import MODEL_HOME
|
||||
from paddleaudio import load
|
||||
from paddleaudio.features import LogMelSpectrogram
|
||||
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
||||
|
||||
__all__ = ['CLSExecutor']
|
||||
|
||||
pretrained_models = {
|
||||
# The tags for pretrained_models should be "{model_name}[_{dataset}][-{lang}][-...]".
|
||||
# e.g. "conformer_wenetspeech-zh-16k", "transformer_aishell-zh-16k" and "panns_cnn6-32k".
|
||||
# Command line and python api use "{model_name}[_{dataset}]" as --model, usage:
|
||||
# "paddlespeech asr --model conformer_wenetspeech --lang zh --sr 16000 --input ./input.wav"
|
||||
"panns_cnn6-32k": {
|
||||
'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn6.tar.gz',
|
||||
'md5': '4cf09194a95df024fd12f84712cf0f9c',
|
||||
'cfg_path': 'panns.yaml',
|
||||
'ckpt_path': 'cnn6.pdparams',
|
||||
'label_file': 'audioset_labels.txt',
|
||||
},
|
||||
"panns_cnn10-32k": {
|
||||
'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn10.tar.gz',
|
||||
'md5': 'cb8427b22176cc2116367d14847f5413',
|
||||
'cfg_path': 'panns.yaml',
|
||||
'ckpt_path': 'cnn10.pdparams',
|
||||
'label_file': 'audioset_labels.txt',
|
||||
},
|
||||
"panns_cnn14-32k": {
|
||||
'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn14.tar.gz',
|
||||
'md5': 'e3b9b5614a1595001161d0ab95edee97',
|
||||
'cfg_path': 'panns.yaml',
|
||||
'ckpt_path': 'cnn14.pdparams',
|
||||
'label_file': 'audioset_labels.txt',
|
||||
},
|
||||
}
|
||||
|
||||
model_alias = {
|
||||
"panns_cnn6": "paddlespeech.cls.models.panns:CNN6",
|
||||
"panns_cnn10": "paddlespeech.cls.models.panns:CNN10",
|
||||
"panns_cnn14": "paddlespeech.cls.models.panns:CNN14",
|
||||
}
|
||||
|
||||
|
||||
@cli_register(
|
||||
name='paddlespeech.cls', description='Audio classification infer command.')
|
||||
class CLSExecutor(BaseExecutor):
|
||||
def __init__(self):
|
||||
super(CLSExecutor, self).__init__()
|
||||
|
||||
self.parser = argparse.ArgumentParser(
|
||||
prog='paddlespeech.cls', add_help=True)
|
||||
self.parser.add_argument(
|
||||
'--input', type=str, required=True, help='Audio file to classify.')
|
||||
self.parser.add_argument(
|
||||
'--model',
|
||||
type=str,
|
||||
default='panns_cnn14',
|
||||
help='Choose model type of cls task.')
|
||||
self.parser.add_argument(
|
||||
'--config',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Config of cls task. Use deault config when it is None.')
|
||||
self.parser.add_argument(
|
||||
'--ckpt_path',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Checkpoint file of model.')
|
||||
self.parser.add_argument(
|
||||
'--label_file',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Label file of cls task.')
|
||||
self.parser.add_argument(
|
||||
'--topk',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Return topk scores of classification result.')
|
||||
self.parser.add_argument(
|
||||
'--device',
|
||||
type=str,
|
||||
default=paddle.get_device(),
|
||||
help='Choose device to execute model inference.')
|
||||
|
||||
def _get_pretrained_path(self, tag: str) -> os.PathLike:
|
||||
"""
|
||||
Download and returns pretrained resources path of current task.
|
||||
"""
|
||||
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format(
|
||||
tag)
|
||||
|
||||
res_path = os.path.join(MODEL_HOME, tag)
|
||||
decompressed_path = download_and_decompress(pretrained_models[tag],
|
||||
res_path)
|
||||
decompressed_path = os.path.abspath(decompressed_path)
|
||||
logger.info(
|
||||
'Use pretrained model stored in: {}'.format(decompressed_path))
|
||||
|
||||
return decompressed_path
|
||||
|
||||
def _init_from_path(self,
|
||||
model_type: str='panns_cnn14',
|
||||
cfg_path: Optional[os.PathLike]=None,
|
||||
ckpt_path: Optional[os.PathLike]=None,
|
||||
label_file: Optional[os.PathLike]=None):
|
||||
"""
|
||||
Init model and other resources from a specific path.
|
||||
"""
|
||||
if hasattr(self, 'model'):
|
||||
logger.info('Model had been initialized.')
|
||||
return
|
||||
|
||||
if label_file is None or ckpt_path is None:
|
||||
tag = model_type + '-' + '32k' # panns_cnn14-32k
|
||||
self.res_path = self._get_pretrained_path(tag)
|
||||
self.cfg_path = os.path.join(self.res_path,
|
||||
pretrained_models[tag]['cfg_path'])
|
||||
self.label_file = os.path.join(self.res_path,
|
||||
pretrained_models[tag]['label_file'])
|
||||
self.ckpt_path = os.path.join(self.res_path,
|
||||
pretrained_models[tag]['ckpt_path'])
|
||||
else:
|
||||
self.cfg_path = os.path.abspath(cfg_path)
|
||||
self.label_file = os.path.abspath(label_file)
|
||||
self.ckpt_path = os.path.abspath(ckpt_path)
|
||||
|
||||
# config
|
||||
with open(self.cfg_path, 'r') as f:
|
||||
self._conf = yaml.safe_load(f)
|
||||
|
||||
# labels
|
||||
self._label_list = []
|
||||
with open(self.label_file, 'r') as f:
|
||||
for line in f:
|
||||
self._label_list.append(line.strip())
|
||||
|
||||
# model
|
||||
model_class = dynamic_import(model_type, model_alias)
|
||||
model_dict = paddle.load(self.ckpt_path)
|
||||
self.model = model_class(extract_embedding=False)
|
||||
self.model.set_state_dict(model_dict)
|
||||
self.model.eval()
|
||||
|
||||
def preprocess(self, audio_file: Union[str, os.PathLike]):
|
||||
"""
|
||||
Input preprocess and return paddle.Tensor stored in self.input.
|
||||
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
|
||||
"""
|
||||
feat_conf = self._conf['feature']
|
||||
logger.info(feat_conf)
|
||||
waveform, _ = load(
|
||||
file=audio_file,
|
||||
sr=feat_conf['sample_rate'],
|
||||
mono=True,
|
||||
dtype='float32')
|
||||
logger.info("Preprocessing audio_file:" + audio_file)
|
||||
|
||||
# Feature extraction
|
||||
feature_extractor = LogMelSpectrogram(
|
||||
sr=feat_conf['sample_rate'],
|
||||
n_fft=feat_conf['n_fft'],
|
||||
hop_length=feat_conf['hop_length'],
|
||||
window=feat_conf['window'],
|
||||
win_length=feat_conf['window_length'],
|
||||
f_min=feat_conf['f_min'],
|
||||
f_max=feat_conf['f_max'],
|
||||
n_mels=feat_conf['n_mels'], )
|
||||
feats = feature_extractor(
|
||||
paddle.to_tensor(paddle.to_tensor(waveform).unsqueeze(0)))
|
||||
self._inputs['feats'] = paddle.transpose(feats, [0, 2, 1]).unsqueeze(
|
||||
1) # [B, N, T] -> [B, 1, T, N]
|
||||
|
||||
@paddle.no_grad()
|
||||
def infer(self):
|
||||
"""
|
||||
Model inference and result stored in self.output.
|
||||
"""
|
||||
self._outputs['logits'] = self.model(self._inputs['feats'])
|
||||
|
||||
def _generate_topk_label(self, result: np.ndarray, topk: int) -> str:
|
||||
assert topk <= len(
|
||||
self._label_list), 'Value of topk is larger than number of labels.'
|
||||
|
||||
topk_idx = (-result).argsort()[:topk]
|
||||
ret = ''
|
||||
for idx in topk_idx:
|
||||
label, score = self._label_list[idx], result[idx]
|
||||
ret += f'{label}: {score}\n'
|
||||
return ret
|
||||
|
||||
def postprocess(self, topk: int) -> Union[str, os.PathLike]:
|
||||
"""
|
||||
Output postprocess and return human-readable results such as texts and audio files.
|
||||
"""
|
||||
return self._generate_topk_label(
|
||||
result=self._outputs['logits'].squeeze(0).numpy(), topk=topk)
|
||||
|
||||
def execute(self, argv: List[str]) -> bool:
|
||||
"""
|
||||
Command line entry.
|
||||
"""
|
||||
parser_args = self.parser.parse_args(argv)
|
||||
|
||||
model_type = parser_args.model
|
||||
label_file = parser_args.label_file
|
||||
cfg_path = parser_args.config
|
||||
ckpt_path = parser_args.ckpt_path
|
||||
audio_file = parser_args.input
|
||||
topk = parser_args.topk
|
||||
device = parser_args.device
|
||||
|
||||
try:
|
||||
res = self(model_type, cfg_path, label_file, ckpt_path, audio_file,
|
||||
topk, device)
|
||||
logger.info('CLS Result:\n{}'.format(res))
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
return False
|
||||
|
||||
def __call__(self, model, config, ckpt_path, label_file, audio_file, topk,
|
||||
device):
|
||||
"""
|
||||
Python API to call an executor.
|
||||
"""
|
||||
audio_file = os.path.abspath(audio_file)
|
||||
# self._check(audio_file, sample_rate)
|
||||
paddle.set_device(device)
|
||||
self._init_from_path(model, config, ckpt_path, label_file)
|
||||
self.preprocess(audio_file)
|
||||
self.infer()
|
||||
res = self.postprocess(topk) # Retrieve result of cls.
|
||||
|
||||
return res
|
Loading…
Reference in new issue