|
|
@ -7,10 +7,14 @@ import sys
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
import argparse
|
|
|
|
import functools
|
|
|
|
import functools
|
|
|
|
|
|
|
|
import gzip
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
import _init_paths
|
|
|
|
import _init_paths
|
|
|
|
from data_utils.data import DataGenerator
|
|
|
|
from data_utils.data import DataGenerator
|
|
|
|
from model_utils.model import DeepSpeech2Model
|
|
|
|
from decoders.swig_wrapper import Scorer
|
|
|
|
|
|
|
|
from decoders.swig_wrapper import ctc_beam_search_decoder_batch
|
|
|
|
|
|
|
|
from model_utils.model import deep_speech_v2_network
|
|
|
|
from utils.error_rate import wer, cer
|
|
|
|
from utils.error_rate import wer, cer
|
|
|
|
from utils.utility import add_arguments, print_arguments
|
|
|
|
from utils.utility import add_arguments, print_arguments
|
|
|
|
|
|
|
|
|
|
|
@ -66,6 +70,9 @@ add_arg('specgram_type', str,
|
|
|
|
args = parser.parse_args()
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
|
|
|
|
|
|
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
|
|
|
|
|
|
|
|
|
|
|
|
def tune():
|
|
|
|
def tune():
|
|
|
|
"""Tune parameters alpha and beta incrementally."""
|
|
|
|
"""Tune parameters alpha and beta incrementally."""
|
|
|
|
if not args.num_alphas >= 0:
|
|
|
|
if not args.num_alphas >= 0:
|
|
|
@ -79,29 +86,55 @@ def tune():
|
|
|
|
augmentation_config='{}',
|
|
|
|
augmentation_config='{}',
|
|
|
|
specgram_type=args.specgram_type,
|
|
|
|
specgram_type=args.specgram_type,
|
|
|
|
num_threads=1)
|
|
|
|
num_threads=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audio_data = paddle.layer.data(
|
|
|
|
|
|
|
|
name="audio_spectrogram",
|
|
|
|
|
|
|
|
type=paddle.data_type.dense_array(161 * 161))
|
|
|
|
|
|
|
|
text_data = paddle.layer.data(
|
|
|
|
|
|
|
|
name="transcript_text",
|
|
|
|
|
|
|
|
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_probs, _ = deep_speech_v2_network(
|
|
|
|
|
|
|
|
audio_data=audio_data,
|
|
|
|
|
|
|
|
text_data=text_data,
|
|
|
|
|
|
|
|
dict_size=data_generator.vocab_size,
|
|
|
|
|
|
|
|
num_conv_layers=args.num_conv_layers,
|
|
|
|
|
|
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
|
|
|
|
|
|
rnn_size=args.rnn_layer_size,
|
|
|
|
|
|
|
|
use_gru=args.use_gru,
|
|
|
|
|
|
|
|
share_rnn_weights=args.share_rnn_weights)
|
|
|
|
|
|
|
|
|
|
|
|
batch_reader = data_generator.batch_reader_creator(
|
|
|
|
batch_reader = data_generator.batch_reader_creator(
|
|
|
|
manifest_path=args.tune_manifest,
|
|
|
|
manifest_path=args.tune_manifest,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
sortagrad=False,
|
|
|
|
sortagrad=False,
|
|
|
|
shuffle_method=None)
|
|
|
|
shuffle_method=None)
|
|
|
|
tune_data = batch_reader().next()
|
|
|
|
|
|
|
|
target_transcripts = [
|
|
|
|
|
|
|
|
''.join([data_generator.vocab_list[token] for token in transcript])
|
|
|
|
|
|
|
|
for _, transcript in tune_data
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ds2_model = DeepSpeech2Model(
|
|
|
|
|
|
|
|
vocab_size=data_generator.vocab_size,
|
|
|
|
|
|
|
|
num_conv_layers=args.num_conv_layers,
|
|
|
|
|
|
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
|
|
|
|
|
|
rnn_layer_size=args.rnn_layer_size,
|
|
|
|
|
|
|
|
use_gru=args.use_gru,
|
|
|
|
|
|
|
|
pretrained_model_path=args.model_path,
|
|
|
|
|
|
|
|
share_rnn_weights=args.share_rnn_weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# load parameters
|
|
|
|
|
|
|
|
parameters = paddle.parameters.Parameters.from_tar(
|
|
|
|
|
|
|
|
gzip.open(args.model_path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inferer = paddle.inference.Inference(
|
|
|
|
|
|
|
|
output_layer=output_probs, parameters=parameters)
|
|
|
|
# decoders only accept string encoded in utf-8
|
|
|
|
# decoders only accept string encoded in utf-8
|
|
|
|
vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list]
|
|
|
|
vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# init logger
|
|
|
|
|
|
|
|
logger = logging.getLogger("")
|
|
|
|
|
|
|
|
logger.setLevel(level=logging.INFO)
|
|
|
|
|
|
|
|
# init external scorer
|
|
|
|
|
|
|
|
logger.info("begin to initialize the external scorer for tuning")
|
|
|
|
|
|
|
|
ext_scorer = Scorer(
|
|
|
|
|
|
|
|
alpha=args.alpha_from,
|
|
|
|
|
|
|
|
beta=args.beta_from,
|
|
|
|
|
|
|
|
model_path=args.lang_model_path,
|
|
|
|
|
|
|
|
vocabulary=vocab_list)
|
|
|
|
|
|
|
|
logger.info("language model: "
|
|
|
|
|
|
|
|
"is_character_based = %d," % ext_scorer.is_character_based() +
|
|
|
|
|
|
|
|
" max_order = %d," % ext_scorer.get_max_order() +
|
|
|
|
|
|
|
|
" dict_size = %d" % ext_scorer.get_dict_size())
|
|
|
|
|
|
|
|
logger.info("end initializing scorer. Start tuning ...")
|
|
|
|
|
|
|
|
|
|
|
|
error_rate_func = cer if args.error_rate_type == 'cer' else wer
|
|
|
|
error_rate_func = cer if args.error_rate_type == 'cer' else wer
|
|
|
|
# create grid for search
|
|
|
|
# create grid for search
|
|
|
|
cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
|
|
|
|
cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
|
|
|
@ -116,6 +149,13 @@ def tune():
|
|
|
|
for infer_data in batch_reader():
|
|
|
|
for infer_data in batch_reader():
|
|
|
|
if (args.num_batches >= 0) and (cur_batch >= args.num_batches):
|
|
|
|
if (args.num_batches >= 0) and (cur_batch >= args.num_batches):
|
|
|
|
break
|
|
|
|
break
|
|
|
|
|
|
|
|
infer_results = inferer.infer(input=infer_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_steps = len(infer_results) // len(infer_data)
|
|
|
|
|
|
|
|
probs_split = [
|
|
|
|
|
|
|
|
infer_results[i * num_steps:(i + 1) * num_steps]
|
|
|
|
|
|
|
|
for i in xrange(len(infer_data))
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
target_transcripts = [
|
|
|
|
target_transcripts = [
|
|
|
|
''.join([data_generator.vocab_list[token] for token in transcript])
|
|
|
|
''.join([data_generator.vocab_list[token] for token in transcript])
|
|
|
@ -125,18 +165,18 @@ def tune():
|
|
|
|
num_ins += len(target_transcripts)
|
|
|
|
num_ins += len(target_transcripts)
|
|
|
|
# grid search
|
|
|
|
# grid search
|
|
|
|
for index, (alpha, beta) in enumerate(params_grid):
|
|
|
|
for index, (alpha, beta) in enumerate(params_grid):
|
|
|
|
result_transcripts = ds2_model.infer_batch(
|
|
|
|
# reset alpha & beta
|
|
|
|
infer_data=infer_data,
|
|
|
|
ext_scorer.reset_params(alpha, beta)
|
|
|
|
decoding_method='ctc_beam_search',
|
|
|
|
beam_search_results = ctc_beam_search_decoder_batch(
|
|
|
|
beam_alpha=alpha,
|
|
|
|
probs_split=probs_split,
|
|
|
|
beam_beta=beta,
|
|
|
|
vocabulary=vocab_list,
|
|
|
|
beam_size=args.beam_size,
|
|
|
|
beam_size=args.beam_size,
|
|
|
|
cutoff_prob=args.cutoff_prob,
|
|
|
|
num_processes=args.num_proc_bsearch,
|
|
|
|
cutoff_top_n=args.cutoff_top_n,
|
|
|
|
cutoff_prob=args.cutoff_prob,
|
|
|
|
vocab_list=vocab_list,
|
|
|
|
cutoff_top_n=args.cutoff_top_n,
|
|
|
|
language_model_path=args.lang_model_path,
|
|
|
|
ext_scoring_func=ext_scorer, )
|
|
|
|
num_processes=args.num_proc_bsearch)
|
|
|
|
|
|
|
|
|
|
|
|
result_transcripts = [res[0][1] for res in beam_search_results]
|
|
|
|
for target, result in zip(target_transcripts, result_transcripts):
|
|
|
|
for target, result in zip(target_transcripts, result_transcripts):
|
|
|
|
err_sum[index] += error_rate_func(target, result)
|
|
|
|
err_sum[index] += error_rate_func(target, result)
|
|
|
|
err_ave[index] = err_sum[index] / num_ins
|
|
|
|
err_ave[index] = err_sum[index] / num_ins
|
|
|
@ -167,7 +207,7 @@ def tune():
|
|
|
|
% (args.num_batches, "%.3f" % params_grid[min_index][0],
|
|
|
|
% (args.num_batches, "%.3f" % params_grid[min_index][0],
|
|
|
|
"%.3f" % params_grid[min_index][1]))
|
|
|
|
"%.3f" % params_grid[min_index][1]))
|
|
|
|
|
|
|
|
|
|
|
|
ds2_model.logger.info("finish inference")
|
|
|
|
logger.info("finish tuning")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
def main():
|
|
|
|