parent
d7928d712d
commit
1d1e859de9
@ -0,0 +1,188 @@
|
||||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
from paddle import nn
|
||||
|
||||
from paddlespeech.t2s.modules.nets_utils import initialize
|
||||
from paddlespeech.utils.initialize import _calculate_fan_in_and_fan_out
|
||||
from paddlespeech.utils.initialize import kaiming_normal_
|
||||
from paddlespeech.utils.initialize import kaiming_uniform_
|
||||
from paddlespeech.utils.initialize import uniform_
|
||||
from paddlespeech.utils.initialize import zeros_
|
||||
|
||||
|
||||
def Conv1D(*args, **kwargs):
|
||||
layer = nn.Conv1D(*args, **kwargs)
|
||||
# Initialize the weight to be consistent with the official
|
||||
kaiming_normal_(layer.weight)
|
||||
|
||||
# Initialization is consistent with torch
|
||||
if layer.bias is not None:
|
||||
fan_in, _ = _calculate_fan_in_and_fan_out(layer.weight)
|
||||
if fan_in != 0:
|
||||
bound = 1 / math.sqrt(fan_in)
|
||||
uniform_(layer.bias, -bound, bound)
|
||||
return layer
|
||||
|
||||
|
||||
# Initialization is consistent with torch
|
||||
def Linear(*args, **kwargs):
|
||||
layer = nn.Linear(*args, **kwargs)
|
||||
kaiming_uniform_(layer.weight, a=math.sqrt(5))
|
||||
if layer.bias is not None:
|
||||
fan_in, _ = _calculate_fan_in_and_fan_out(layer.weight)
|
||||
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
||||
uniform_(layer.bias, -bound, bound)
|
||||
return layer
|
||||
|
||||
|
||||
class ResidualBlock(nn.Layer):
|
||||
"""ResidualBlock
|
||||
"""
|
||||
|
||||
def __init__(self, encoder_hidden, residual_channels, gate_channels,
|
||||
kernel_size, dilation):
|
||||
super().__init__()
|
||||
self.dilated_conv = Conv1D(
|
||||
residual_channels,
|
||||
gate_channels,
|
||||
kernel_size,
|
||||
padding=dilation,
|
||||
dilation=dilation)
|
||||
self.diffusion_projection = Linear(residual_channels, residual_channels)
|
||||
self.conditioner_projection = Conv1D(encoder_hidden, gate_channels, 1)
|
||||
self.output_projection = Conv1D(residual_channels, gate_channels, 1)
|
||||
|
||||
def forward(self, x, conditioner, diffusion_step):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
nn (_type_): _description_
|
||||
"""
|
||||
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
||||
conditioner = self.conditioner_projection(conditioner)
|
||||
y = x + diffusion_step
|
||||
|
||||
y = self.dilated_conv(y) + conditioner
|
||||
|
||||
gate, filter = paddle.chunk(y, 2, axis=1)
|
||||
y = F.sigmoid(gate) * paddle.tanh(filter)
|
||||
|
||||
y = self.output_projection(y)
|
||||
residual, skip = paddle.chunk(y, 2, axis=1)
|
||||
return (x + residual) / math.sqrt(2.0), skip
|
||||
|
||||
|
||||
class SinusoidalPosEmb(nn.Layer):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
nn (_type_): _description_
|
||||
"""
|
||||
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, x):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
nn (_type_): _description_
|
||||
"""
|
||||
x = paddle.cast(x, 'float32')
|
||||
half_dim = self.dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = paddle.exp(paddle.arange(half_dim) * -emb)
|
||||
emb = x[:, None] * emb[None, :]
|
||||
emb = paddle.concat([emb.sin(), emb.cos()], axis=-1)
|
||||
return emb
|
||||
|
||||
|
||||
class DiffNet(nn.Layer):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int=80,
|
||||
out_channels: int=80,
|
||||
kernel_size: int=3,
|
||||
layers: int=20,
|
||||
stacks: int=5,
|
||||
residual_channels: int=256,
|
||||
gate_channels: int=512,
|
||||
skip_channels: int=256,
|
||||
aux_channels: int=256,
|
||||
dropout: float=0.,
|
||||
bias: bool=True,
|
||||
use_weight_norm: bool=False,
|
||||
init_type: str="kaiming_normal", ):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.layers = layers
|
||||
self.aux_channels = aux_channels
|
||||
self.residual_channels = residual_channels
|
||||
self.gate_channels = gate_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_cycle_length = layers // stacks
|
||||
self.skip_channels = skip_channels
|
||||
|
||||
self.input_projection = Conv1D(self.in_channels, self.residual_channels,
|
||||
1)
|
||||
self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
|
||||
dim = self.residual_channels
|
||||
self.mlp = nn.Sequential(
|
||||
Linear(dim, dim * 4), nn.Mish(), Linear(dim * 4, dim))
|
||||
self.residual_layers = nn.LayerList([
|
||||
ResidualBlock(
|
||||
encoder_hidden=self.aux_channels,
|
||||
residual_channels=self.residual_channels,
|
||||
gate_channels=self.gate_channels,
|
||||
kernel_size=self.kernel_size,
|
||||
dilation=2**(i % self.dilation_cycle_length))
|
||||
for i in range(self.layers)
|
||||
])
|
||||
self.skip_projection = Conv1D(self.residual_channels,
|
||||
self.skip_channels, 1)
|
||||
self.output_projection = Conv1D(self.residual_channels,
|
||||
self.out_channels, 1)
|
||||
zeros_(self.output_projection.weight)
|
||||
|
||||
def forward(self, spec, diffusion_step, cond):
|
||||
"""
|
||||
|
||||
:param spec: [B, M, T]
|
||||
:param diffusion_step: [B, 1]
|
||||
:param cond: [B, M, T]
|
||||
:return:
|
||||
"""
|
||||
x = spec
|
||||
x = self.input_projection(x) # x [B, residual_channel, T]
|
||||
|
||||
x = F.relu(x)
|
||||
diffusion_step = self.diffusion_embedding(diffusion_step)
|
||||
diffusion_step = self.mlp(diffusion_step)
|
||||
skip = []
|
||||
for layer_id, layer in enumerate(self.residual_layers):
|
||||
x, skip_connection = layer(x, cond, diffusion_step)
|
||||
skip.append(skip_connection)
|
||||
x = paddle.sum(
|
||||
paddle.stack(skip), axis=0) / math.sqrt(len(self.residual_layers))
|
||||
x = self.skip_projection(x)
|
||||
x = F.relu(x)
|
||||
x = self.output_projection(x) # [B, 80, T]
|
||||
return x
|
@ -0,0 +1,184 @@
|
||||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
|
||||
from paddle import nn
|
||||
from ppdiffusers.models.embeddings import Timesteps
|
||||
|
||||
from paddlespeech.t2s.modules.nets_utils import initialize
|
||||
from paddlespeech.t2s.modules.residual_block import WaveNetResidualBlock
|
||||
|
||||
|
||||
class WaveNetDenoiser(nn.Layer):
|
||||
"""A Mel-Spectrogram Denoiser modified from WaveNet
|
||||
|
||||
Args:
|
||||
in_channels (int, optional):
|
||||
Number of channels of the input mel-spectrogram, by default 80
|
||||
out_channels (int, optional):
|
||||
Number of channels of the output mel-spectrogram, by default 80
|
||||
kernel_size (int, optional):
|
||||
Kernel size of the residual blocks inside, by default 3
|
||||
layers (int, optional):
|
||||
Number of residual blocks inside, by default 20
|
||||
stacks (int, optional):
|
||||
The number of groups to split the residual blocks into, by default 5
|
||||
Within each group, the dilation of the residual block grows exponentially.
|
||||
residual_channels (int, optional):
|
||||
Residual channel of the residual blocks, by default 256
|
||||
gate_channels (int, optional):
|
||||
Gate channel of the residual blocks, by default 512
|
||||
skip_channels (int, optional):
|
||||
Skip channel of the residual blocks, by default 256
|
||||
aux_channels (int, optional):
|
||||
Auxiliary channel of the residual blocks, by default 256
|
||||
dropout (float, optional):
|
||||
Dropout of the residual blocks, by default 0.
|
||||
bias (bool, optional):
|
||||
Whether to use bias in residual blocks, by default True
|
||||
use_weight_norm (bool, optional):
|
||||
Whether to use weight norm in all convolutions, by default False
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int=80,
|
||||
out_channels: int=80,
|
||||
kernel_size: int=3,
|
||||
layers: int=20,
|
||||
stacks: int=5,
|
||||
residual_channels: int=256,
|
||||
gate_channels: int=512,
|
||||
skip_channels: int=256,
|
||||
aux_channels: int=256,
|
||||
dropout: float=0.,
|
||||
bias: bool=True,
|
||||
use_weight_norm: bool=False,
|
||||
init_type: str="kaiming_normal", ):
|
||||
super().__init__()
|
||||
|
||||
# initialize parameters
|
||||
initialize(self, init_type)
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.aux_channels = aux_channels
|
||||
self.layers = layers
|
||||
self.stacks = stacks
|
||||
self.kernel_size = kernel_size
|
||||
|
||||
assert layers % stacks == 0
|
||||
layers_per_stack = layers // stacks
|
||||
|
||||
self.first_t_emb = nn.Sequential(
|
||||
Timesteps(
|
||||
residual_channels,
|
||||
flip_sin_to_cos=False,
|
||||
downscale_freq_shift=1),
|
||||
nn.Linear(residual_channels, residual_channels * 4),
|
||||
nn.Mish(), nn.Linear(residual_channels * 4, residual_channels))
|
||||
self.t_emb_layers = nn.LayerList([
|
||||
nn.Linear(residual_channels, residual_channels)
|
||||
for _ in range(layers)
|
||||
])
|
||||
|
||||
self.first_conv = nn.Conv1D(
|
||||
in_channels, residual_channels, 1, bias_attr=True)
|
||||
self.first_act = nn.ReLU()
|
||||
|
||||
self.conv_layers = nn.LayerList()
|
||||
for layer in range(layers):
|
||||
dilation = 2**(layer % layers_per_stack)
|
||||
conv = WaveNetResidualBlock(
|
||||
kernel_size=kernel_size,
|
||||
residual_channels=residual_channels,
|
||||
gate_channels=gate_channels,
|
||||
skip_channels=skip_channels,
|
||||
aux_channels=aux_channels,
|
||||
dilation=dilation,
|
||||
dropout=dropout,
|
||||
bias=bias)
|
||||
self.conv_layers.append(conv)
|
||||
|
||||
final_conv = nn.Conv1D(skip_channels, out_channels, 1, bias_attr=True)
|
||||
nn.initializer.Constant(0.0)(final_conv.weight)
|
||||
self.last_conv_layers = nn.Sequential(nn.ReLU(),
|
||||
nn.Conv1D(
|
||||
skip_channels,
|
||||
skip_channels,
|
||||
1,
|
||||
bias_attr=True),
|
||||
nn.ReLU(), final_conv)
|
||||
|
||||
if use_weight_norm:
|
||||
self.apply_weight_norm()
|
||||
|
||||
def forward(self, x, t, c):
|
||||
"""Denoise mel-spectrogram.
|
||||
|
||||
Args:
|
||||
x(Tensor):
|
||||
Shape (N, C_in, T), The input mel-spectrogram.
|
||||
t(Tensor):
|
||||
Shape (N), The timestep input.
|
||||
c(Tensor):
|
||||
Shape (N, C_aux, T'). The auxiliary input (e.g. fastspeech2 encoder output).
|
||||
|
||||
Returns:
|
||||
Tensor: Shape (N, C_out, T), the denoised mel-spectrogram.
|
||||
"""
|
||||
assert c.shape[-1] == x.shape[-1]
|
||||
|
||||
if t.shape[0] != x.shape[0]:
|
||||
t = t.tile([x.shape[0]])
|
||||
t_emb = self.first_t_emb(t)
|
||||
t_embs = [
|
||||
t_emb_layer(t_emb)[..., None] for t_emb_layer in self.t_emb_layers
|
||||
]
|
||||
|
||||
x = self.first_conv(x)
|
||||
x = self.first_act(x)
|
||||
skips = 0
|
||||
for f, t in zip(self.conv_layers, t_embs):
|
||||
x = x + t
|
||||
x, s = f(x, c)
|
||||
skips += s
|
||||
skips *= math.sqrt(1.0 / len(self.conv_layers))
|
||||
|
||||
x = self.last_conv_layers(skips)
|
||||
return x
|
||||
|
||||
def apply_weight_norm(self):
|
||||
"""Recursively apply weight normalization to all the Convolution layers
|
||||
in the sublayers.
|
||||
"""
|
||||
|
||||
def _apply_weight_norm(layer):
|
||||
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
||||
nn.utils.weight_norm(layer)
|
||||
|
||||
self.apply(_apply_weight_norm)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
"""Recursively remove weight normalization from all the Convolution
|
||||
layers in the sublayers.
|
||||
"""
|
||||
|
||||
def _remove_weight_norm(layer):
|
||||
try:
|
||||
nn.utils.remove_weight_norm(layer)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
self.apply(_remove_weight_norm)
|
Loading…
Reference in new issue