|
|
@ -462,31 +462,37 @@ class U2Tester(U2Trainer):
|
|
|
|
infer_model = U2InferModel.from_pretrained(self.test_loader,
|
|
|
|
infer_model = U2InferModel.from_pretrained(self.test_loader,
|
|
|
|
self.config.clone(),
|
|
|
|
self.config.clone(),
|
|
|
|
self.args.checkpoint_path)
|
|
|
|
self.args.checkpoint_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size = 1
|
|
|
|
feat_dim = self.test_loader.feat_dim
|
|
|
|
feat_dim = self.test_loader.feat_dim
|
|
|
|
input_spec = [
|
|
|
|
model_size = 512
|
|
|
|
paddle.static.InputSpec(shape=[1, None, feat_dim],
|
|
|
|
num_left_chunks = -1
|
|
|
|
dtype='float32'), # audio, [B,T,D]
|
|
|
|
|
|
|
|
paddle.static.InputSpec(shape=[1],
|
|
|
|
return infer_model, (batch_size, feat_dim, model_size, num_left_chunks)
|
|
|
|
dtype='int64'), # audio_length, [B]
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
return infer_model, input_spec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
@paddle.no_grad()
|
|
|
|
def export(self):
|
|
|
|
def export(self):
|
|
|
|
infer_model, input_spec = self.load_inferspec()
|
|
|
|
infer_model, input_spec = self.load_inferspec()
|
|
|
|
assert isinstance(input_spec, list), type(input_spec)
|
|
|
|
|
|
|
|
del input_spec
|
|
|
|
|
|
|
|
infer_model.eval()
|
|
|
|
infer_model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
######################### infer_model.forward_encoder_chunk zero Tensor online ############
|
|
|
|
assert isinstance(input_spec, list), type(input_spec)
|
|
|
|
|
|
|
|
batch_size, feat_dim, model_size, num_left_chunks = input_spec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
######################### infer_model.forward_encoder_chunk zero tensor online ############
|
|
|
|
# TODO: 80(feature dim) be configable
|
|
|
|
# TODO: 80(feature dim) be configable
|
|
|
|
input_spec = [
|
|
|
|
input_spec = [
|
|
|
|
paddle.static.InputSpec(shape=[1, None, 80], dtype='float32'),
|
|
|
|
# xs, (B, T, D)
|
|
|
|
|
|
|
|
paddle.static.InputSpec(shape=[batch_size, None, feat_dim], dtype='float32'),
|
|
|
|
|
|
|
|
# offset, int, but need be tensor
|
|
|
|
paddle.static.InputSpec(shape=[1], dtype='int32'),
|
|
|
|
paddle.static.InputSpec(shape=[1], dtype='int32'),
|
|
|
|
-1,
|
|
|
|
# required_cache_size, int
|
|
|
|
|
|
|
|
num_left_chunks,
|
|
|
|
|
|
|
|
# att_cache
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
shape=[None, None, None, None],
|
|
|
|
shape=[None, None, None, None],
|
|
|
|
dtype='float32'),
|
|
|
|
dtype='float32'),
|
|
|
|
|
|
|
|
# cnn_cache
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
shape=[None, None, None, None], dtype='float32')
|
|
|
|
shape=[None, None, None, None], dtype='float32')
|
|
|
|
]
|
|
|
|
]
|
|
|
@ -496,9 +502,12 @@ class U2Tester(U2Trainer):
|
|
|
|
######################### infer_model.forward_attention_decoder ########################
|
|
|
|
######################### infer_model.forward_attention_decoder ########################
|
|
|
|
# TODO: 512(encoder_output) be configable. 1 for BatchSize
|
|
|
|
# TODO: 512(encoder_output) be configable. 1 for BatchSize
|
|
|
|
input_spec = [
|
|
|
|
input_spec = [
|
|
|
|
|
|
|
|
# hyps, (B, U)
|
|
|
|
paddle.static.InputSpec(shape=[None, None], dtype='int64'),
|
|
|
|
paddle.static.InputSpec(shape=[None, None], dtype='int64'),
|
|
|
|
|
|
|
|
# hyps_lens, (B,)
|
|
|
|
paddle.static.InputSpec(shape=[None], dtype='int64'),
|
|
|
|
paddle.static.InputSpec(shape=[None], dtype='int64'),
|
|
|
|
paddle.static.InputSpec(shape=[1, None, 512], dtype='float32')
|
|
|
|
# encoder_out, (B,T,D)
|
|
|
|
|
|
|
|
paddle.static.InputSpec(shape=[batch_size, None, model_size], dtype='float32')
|
|
|
|
]
|
|
|
|
]
|
|
|
|
infer_model.forward_attention_decoder = paddle.jit.to_static(
|
|
|
|
infer_model.forward_attention_decoder = paddle.jit.to_static(
|
|
|
|
infer_model.forward_attention_decoder, input_spec=input_spec)
|
|
|
|
infer_model.forward_attention_decoder, input_spec=input_spec)
|
|
|
@ -529,7 +538,7 @@ class U2Tester(U2Trainer):
|
|
|
|
|
|
|
|
|
|
|
|
xs1 = paddle.rand(shape=[1, 67, 80], dtype='float32')
|
|
|
|
xs1 = paddle.rand(shape=[1, 67, 80], dtype='float32')
|
|
|
|
offset = paddle.to_tensor([0], dtype='int32')
|
|
|
|
offset = paddle.to_tensor([0], dtype='int32')
|
|
|
|
required_cache_size = -16
|
|
|
|
required_cache_size = num_left_chunks
|
|
|
|
att_cache = paddle.zeros([0, 0, 0, 0])
|
|
|
|
att_cache = paddle.zeros([0, 0, 0, 0])
|
|
|
|
cnn_cache = paddle.zeros([0, 0, 0, 0])
|
|
|
|
cnn_cache = paddle.zeros([0, 0, 0, 0])
|
|
|
|
|
|
|
|
|
|
|
|