|
|
|
@ -13,6 +13,7 @@
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import os
|
|
|
|
|
import re
|
|
|
|
|
from operator import itemgetter
|
|
|
|
|
from typing import Dict
|
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
|
@ -31,6 +32,7 @@ from paddlespeech.t2s.frontend.g2pw import G2PWOnnxConverter
|
|
|
|
|
from paddlespeech.t2s.frontend.generate_lexicon import generate_lexicon
|
|
|
|
|
from paddlespeech.t2s.frontend.tone_sandhi import ToneSandhi
|
|
|
|
|
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
|
|
|
|
|
from paddlespeech.t2s.ssml.xml_processor import MixTextProcessor
|
|
|
|
|
|
|
|
|
|
INITIALS = [
|
|
|
|
|
'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'zh', 'ch', 'sh',
|
|
|
|
@ -81,6 +83,7 @@ class Frontend():
|
|
|
|
|
g2p_model="g2pW",
|
|
|
|
|
phone_vocab_path=None,
|
|
|
|
|
tone_vocab_path=None):
|
|
|
|
|
self.mix_ssml_processor = MixTextProcessor()
|
|
|
|
|
self.tone_modifier = ToneSandhi()
|
|
|
|
|
self.text_normalizer = TextNormalizer()
|
|
|
|
|
self.punc = ":,;。?!“”‘’':,;.?!"
|
|
|
|
@ -143,6 +146,7 @@ class Frontend():
|
|
|
|
|
tone_id = [line.strip().split() for line in f.readlines()]
|
|
|
|
|
for tone, id in tone_id:
|
|
|
|
|
self.vocab_tones[tone] = int(id)
|
|
|
|
|
self.mix_ssml_processor.__repr__()
|
|
|
|
|
|
|
|
|
|
def _init_pypinyin(self):
|
|
|
|
|
large_pinyin.load()
|
|
|
|
@ -281,6 +285,65 @@ class Frontend():
|
|
|
|
|
phones_list.append(merge_list)
|
|
|
|
|
return phones_list
|
|
|
|
|
|
|
|
|
|
def _split_word_to_char(self, words):
|
|
|
|
|
res = []
|
|
|
|
|
for x in words:
|
|
|
|
|
res.append(x)
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
# if using ssml, have pingyin specified, assign pinyin to words
|
|
|
|
|
def _g2p_assign(self,
|
|
|
|
|
words: List[str],
|
|
|
|
|
pinyin_spec: List[str],
|
|
|
|
|
merge_sentences: bool=True) -> List[List[str]]:
|
|
|
|
|
phones_list = []
|
|
|
|
|
initials = []
|
|
|
|
|
finals = []
|
|
|
|
|
|
|
|
|
|
words = self._split_word_to_char(words[0])
|
|
|
|
|
for pinyin, char in zip(pinyin_spec, words):
|
|
|
|
|
sub_initials = []
|
|
|
|
|
sub_finals = []
|
|
|
|
|
pinyin = pinyin.replace("u:", "v")
|
|
|
|
|
#self.pinyin2phone: is a dict with all pinyin mapped with sheng_mu yun_mu
|
|
|
|
|
if pinyin in self.pinyin2phone:
|
|
|
|
|
initial_final_list = self.pinyin2phone[pinyin].split(" ")
|
|
|
|
|
if len(initial_final_list) == 2:
|
|
|
|
|
sub_initials.append(initial_final_list[0])
|
|
|
|
|
sub_finals.append(initial_final_list[1])
|
|
|
|
|
elif len(initial_final_list) == 1:
|
|
|
|
|
sub_initials.append('')
|
|
|
|
|
sub_finals.append(initial_final_list[1])
|
|
|
|
|
else:
|
|
|
|
|
# If it's not pinyin (possibly punctuation) or no conversion is required
|
|
|
|
|
sub_initials.append(pinyin)
|
|
|
|
|
sub_finals.append(pinyin)
|
|
|
|
|
initials.append(sub_initials)
|
|
|
|
|
finals.append(sub_finals)
|
|
|
|
|
|
|
|
|
|
initials = sum(initials, [])
|
|
|
|
|
finals = sum(finals, [])
|
|
|
|
|
phones = []
|
|
|
|
|
for c, v in zip(initials, finals):
|
|
|
|
|
# NOTE: post process for pypinyin outputs
|
|
|
|
|
# we discriminate i, ii and iii
|
|
|
|
|
if c and c not in self.punc:
|
|
|
|
|
phones.append(c)
|
|
|
|
|
if c and c in self.punc:
|
|
|
|
|
phones.append('sp')
|
|
|
|
|
if v and v not in self.punc:
|
|
|
|
|
phones.append(v)
|
|
|
|
|
phones_list.append(phones)
|
|
|
|
|
if merge_sentences:
|
|
|
|
|
merge_list = sum(phones_list, [])
|
|
|
|
|
# rm the last 'sp' to avoid the noise at the end
|
|
|
|
|
# cause in the training data, no 'sp' in the end
|
|
|
|
|
if merge_list[-1] == 'sp':
|
|
|
|
|
merge_list = merge_list[:-1]
|
|
|
|
|
phones_list = []
|
|
|
|
|
phones_list.append(merge_list)
|
|
|
|
|
return phones_list
|
|
|
|
|
|
|
|
|
|
def _merge_erhua(self,
|
|
|
|
|
initials: List[str],
|
|
|
|
|
finals: List[str],
|
|
|
|
@ -396,6 +459,52 @@ class Frontend():
|
|
|
|
|
print("----------------------------")
|
|
|
|
|
return phonemes
|
|
|
|
|
|
|
|
|
|
#@an added for ssml pinyin
|
|
|
|
|
def get_phonemes_ssml(self,
|
|
|
|
|
ssml_inputs: list,
|
|
|
|
|
merge_sentences: bool=True,
|
|
|
|
|
with_erhua: bool=True,
|
|
|
|
|
robot: bool=False,
|
|
|
|
|
print_info: bool=False) -> List[List[str]]:
|
|
|
|
|
all_phonemes = []
|
|
|
|
|
for word_pinyin_item in ssml_inputs:
|
|
|
|
|
phonemes = []
|
|
|
|
|
sentence, pinyin_spec = itemgetter(0, 1)(word_pinyin_item)
|
|
|
|
|
sentences = self.text_normalizer.normalize(sentence)
|
|
|
|
|
if len(pinyin_spec) == 0:
|
|
|
|
|
phonemes = self._g2p(
|
|
|
|
|
sentences,
|
|
|
|
|
merge_sentences=merge_sentences,
|
|
|
|
|
with_erhua=with_erhua)
|
|
|
|
|
else:
|
|
|
|
|
# phonemes should be pinyin_spec
|
|
|
|
|
phonemes = self._g2p_assign(
|
|
|
|
|
sentences, pinyin_spec, merge_sentences=merge_sentences)
|
|
|
|
|
|
|
|
|
|
all_phonemes = all_phonemes + phonemes
|
|
|
|
|
|
|
|
|
|
if robot:
|
|
|
|
|
new_phonemes = []
|
|
|
|
|
for sentence in all_phonemes:
|
|
|
|
|
new_sentence = []
|
|
|
|
|
for item in sentence:
|
|
|
|
|
# `er` only have tone `2`
|
|
|
|
|
if item[-1] in "12345" and item != "er2":
|
|
|
|
|
item = item[:-1] + "1"
|
|
|
|
|
new_sentence.append(item)
|
|
|
|
|
new_phonemes.append(new_sentence)
|
|
|
|
|
all_phonemes = new_phonemes
|
|
|
|
|
|
|
|
|
|
if print_info:
|
|
|
|
|
print("----------------------------")
|
|
|
|
|
print("text norm results:")
|
|
|
|
|
print(sentences)
|
|
|
|
|
print("----------------------------")
|
|
|
|
|
print("g2p results:")
|
|
|
|
|
print(all_phonemes[0])
|
|
|
|
|
print("----------------------------")
|
|
|
|
|
return [sum(all_phonemes, [])]
|
|
|
|
|
|
|
|
|
|
def get_input_ids(self,
|
|
|
|
|
sentence: str,
|
|
|
|
|
merge_sentences: bool=True,
|
|
|
|
@ -405,6 +514,7 @@ class Frontend():
|
|
|
|
|
add_blank: bool=False,
|
|
|
|
|
blank_token: str="<pad>",
|
|
|
|
|
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
|
|
|
|
|
|
|
|
|
|
phonemes = self.get_phonemes(
|
|
|
|
|
sentence,
|
|
|
|
|
merge_sentences=merge_sentences,
|
|
|
|
@ -437,3 +547,49 @@ class Frontend():
|
|
|
|
|
if temp_phone_ids:
|
|
|
|
|
result["phone_ids"] = temp_phone_ids
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
# @an added for ssml
|
|
|
|
|
def get_input_ids_ssml(
|
|
|
|
|
self,
|
|
|
|
|
sentence: str,
|
|
|
|
|
merge_sentences: bool=True,
|
|
|
|
|
get_tone_ids: bool=False,
|
|
|
|
|
robot: bool=False,
|
|
|
|
|
print_info: bool=False,
|
|
|
|
|
add_blank: bool=False,
|
|
|
|
|
blank_token: str="<pad>",
|
|
|
|
|
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
|
|
|
|
|
|
|
|
|
|
l_inputs = MixTextProcessor.get_pinyin_split(sentence)
|
|
|
|
|
phonemes = self.get_phonemes_ssml(
|
|
|
|
|
l_inputs,
|
|
|
|
|
merge_sentences=merge_sentences,
|
|
|
|
|
print_info=print_info,
|
|
|
|
|
robot=robot)
|
|
|
|
|
result = {}
|
|
|
|
|
phones = []
|
|
|
|
|
tones = []
|
|
|
|
|
temp_phone_ids = []
|
|
|
|
|
temp_tone_ids = []
|
|
|
|
|
|
|
|
|
|
for part_phonemes in phonemes:
|
|
|
|
|
phones, tones = self._get_phone_tone(
|
|
|
|
|
part_phonemes, get_tone_ids=get_tone_ids)
|
|
|
|
|
if add_blank:
|
|
|
|
|
phones = insert_after_character(phones, blank_token)
|
|
|
|
|
if tones:
|
|
|
|
|
tone_ids = self._t2id(tones)
|
|
|
|
|
if to_tensor:
|
|
|
|
|
tone_ids = paddle.to_tensor(tone_ids)
|
|
|
|
|
temp_tone_ids.append(tone_ids)
|
|
|
|
|
if phones:
|
|
|
|
|
phone_ids = self._p2id(phones)
|
|
|
|
|
# if use paddle.to_tensor() in onnxruntime, the first time will be too low
|
|
|
|
|
if to_tensor:
|
|
|
|
|
phone_ids = paddle.to_tensor(phone_ids)
|
|
|
|
|
temp_phone_ids.append(phone_ids)
|
|
|
|
|
if temp_tone_ids:
|
|
|
|
|
result["tone_ids"] = temp_tone_ids
|
|
|
|
|
if temp_phone_ids:
|
|
|
|
|
result["phone_ids"] = temp_phone_ids
|
|
|
|
|
return result
|
|
|
|
|