parent
ba7cf0782e
commit
123d7a6f3f
@ -1,159 +0,0 @@
|
|||||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""Prepare Librispeech ASR datasets.
|
|
||||||
|
|
||||||
Download, unpack and create manifest files.
|
|
||||||
Manifest file is a json-format file with each line containing the
|
|
||||||
meta data (i.e. audio filepath, transcript and audio duration)
|
|
||||||
of each audio file in the data set.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import distutils.util
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
import argparse
|
|
||||||
import soundfile
|
|
||||||
import json
|
|
||||||
import codecs
|
|
||||||
import io
|
|
||||||
from data_utils.utility import download, unpack
|
|
||||||
|
|
||||||
URL_ROOT = "http://www.openslr.org/resources/12"
|
|
||||||
URL_ROOT = "https://openslr.magicdatatech.com/resources/12"
|
|
||||||
URL_TEST_CLEAN = URL_ROOT + "/test-clean.tar.gz"
|
|
||||||
URL_TEST_OTHER = URL_ROOT + "/test-other.tar.gz"
|
|
||||||
URL_DEV_CLEAN = URL_ROOT + "/dev-clean.tar.gz"
|
|
||||||
URL_DEV_OTHER = URL_ROOT + "/dev-other.tar.gz"
|
|
||||||
URL_TRAIN_CLEAN_100 = URL_ROOT + "/train-clean-100.tar.gz"
|
|
||||||
URL_TRAIN_CLEAN_360 = URL_ROOT + "/train-clean-360.tar.gz"
|
|
||||||
URL_TRAIN_OTHER_500 = URL_ROOT + "/train-other-500.tar.gz"
|
|
||||||
|
|
||||||
MD5_TEST_CLEAN = "32fa31d27d2e1cad72775fee3f4849a9"
|
|
||||||
MD5_TEST_OTHER = "fb5a50374b501bb3bac4815ee91d3135"
|
|
||||||
MD5_DEV_CLEAN = "42e2234ba48799c1f50f24a7926300a1"
|
|
||||||
MD5_DEV_OTHER = "c8d0bcc9cca99d4f8b62fcc847357931"
|
|
||||||
MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522"
|
|
||||||
MD5_TRAIN_CLEAN_360 = "c0e676e450a7ff2f54aeade5171606fa"
|
|
||||||
MD5_TRAIN_OTHER_500 = "d1a0fd59409feb2c614ce4d30c387708"
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description=__doc__)
|
|
||||||
parser.add_argument(
|
|
||||||
"--target_dir",
|
|
||||||
default='~/.cache/paddle/dataset/speech/libri',
|
|
||||||
type=str,
|
|
||||||
help="Directory to save the dataset. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--manifest_prefix",
|
|
||||||
default="manifest",
|
|
||||||
type=str,
|
|
||||||
help="Filepath prefix for output manifests. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--full_download",
|
|
||||||
default="True",
|
|
||||||
type=distutils.util.strtobool,
|
|
||||||
help="Download all datasets for Librispeech."
|
|
||||||
" If False, only download a minimal requirement (test-clean, dev-clean"
|
|
||||||
" train-clean-100). (default: %(default)s)")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def create_manifest(data_dir, manifest_path):
|
|
||||||
"""Create a manifest json file summarizing the data set, with each line
|
|
||||||
containing the meta data (i.e. audio filepath, transcription text, audio
|
|
||||||
duration) of each audio file within the data set.
|
|
||||||
"""
|
|
||||||
print("Creating manifest %s ..." % manifest_path)
|
|
||||||
json_lines = []
|
|
||||||
for subfolder, _, filelist in sorted(os.walk(data_dir)):
|
|
||||||
text_filelist = [
|
|
||||||
filename for filename in filelist if filename.endswith('trans.txt')
|
|
||||||
]
|
|
||||||
if len(text_filelist) > 0:
|
|
||||||
text_filepath = os.path.join(subfolder, text_filelist[0])
|
|
||||||
for line in io.open(text_filepath, encoding="utf8"):
|
|
||||||
segments = line.strip().split()
|
|
||||||
text = ' '.join(segments[1:]).lower()
|
|
||||||
audio_filepath = os.path.join(subfolder, segments[0] + '.flac')
|
|
||||||
audio_data, samplerate = soundfile.read(audio_filepath)
|
|
||||||
duration = float(len(audio_data)) / samplerate
|
|
||||||
json_lines.append(
|
|
||||||
json.dumps({
|
|
||||||
'audio_filepath': audio_filepath,
|
|
||||||
'duration': duration,
|
|
||||||
'text': text
|
|
||||||
}))
|
|
||||||
with codecs.open(manifest_path, 'w', 'utf-8') as out_file:
|
|
||||||
for line in json_lines:
|
|
||||||
out_file.write(line + '\n')
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataset(url, md5sum, target_dir, manifest_path):
|
|
||||||
"""Download, unpack and create summmary manifest file.
|
|
||||||
"""
|
|
||||||
if not os.path.exists(os.path.join(target_dir, "LibriSpeech")):
|
|
||||||
# download
|
|
||||||
filepath = download(url, md5sum, target_dir)
|
|
||||||
# unpack
|
|
||||||
unpack(filepath, target_dir)
|
|
||||||
else:
|
|
||||||
print("Skip downloading and unpacking. Data already exists in %s." %
|
|
||||||
target_dir)
|
|
||||||
# create manifest json file
|
|
||||||
create_manifest(target_dir, manifest_path)
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
if args.target_dir.startswith('~'):
|
|
||||||
args.target_dir = os.path.expanduser(args.target_dir)
|
|
||||||
|
|
||||||
prepare_dataset(
|
|
||||||
url=URL_TEST_CLEAN,
|
|
||||||
md5sum=MD5_TEST_CLEAN,
|
|
||||||
target_dir=os.path.join(args.target_dir, "test-clean"),
|
|
||||||
manifest_path=args.manifest_prefix + ".test-clean")
|
|
||||||
prepare_dataset(
|
|
||||||
url=URL_DEV_CLEAN,
|
|
||||||
md5sum=MD5_DEV_CLEAN,
|
|
||||||
target_dir=os.path.join(args.target_dir, "dev-clean"),
|
|
||||||
manifest_path=args.manifest_prefix + ".dev-clean")
|
|
||||||
if args.full_download:
|
|
||||||
prepare_dataset(
|
|
||||||
url=URL_TRAIN_CLEAN_100,
|
|
||||||
md5sum=MD5_TRAIN_CLEAN_100,
|
|
||||||
target_dir=os.path.join(args.target_dir, "train-clean-100"),
|
|
||||||
manifest_path=args.manifest_prefix + ".train-clean-100")
|
|
||||||
prepare_dataset(
|
|
||||||
url=URL_TEST_OTHER,
|
|
||||||
md5sum=MD5_TEST_OTHER,
|
|
||||||
target_dir=os.path.join(args.target_dir, "test-other"),
|
|
||||||
manifest_path=args.manifest_prefix + ".test-other")
|
|
||||||
prepare_dataset(
|
|
||||||
url=URL_DEV_OTHER,
|
|
||||||
md5sum=MD5_DEV_OTHER,
|
|
||||||
target_dir=os.path.join(args.target_dir, "dev-other"),
|
|
||||||
manifest_path=args.manifest_prefix + ".dev-other")
|
|
||||||
prepare_dataset(
|
|
||||||
url=URL_TRAIN_CLEAN_360,
|
|
||||||
md5sum=MD5_TRAIN_CLEAN_360,
|
|
||||||
target_dir=os.path.join(args.target_dir, "train-clean-360"),
|
|
||||||
manifest_path=args.manifest_prefix + ".train-clean-360")
|
|
||||||
prepare_dataset(
|
|
||||||
url=URL_TRAIN_OTHER_500,
|
|
||||||
md5sum=MD5_TRAIN_OTHER_500,
|
|
||||||
target_dir=os.path.join(args.target_dir, "train-other-500"),
|
|
||||||
manifest_path=args.manifest_prefix + ".train-other-500")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
@ -0,0 +1,8 @@
|
|||||||
|
export MAIN_ROOT=${PWD}/../../
|
||||||
|
|
||||||
|
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
|
||||||
|
export LC_ALL=C
|
||||||
|
|
||||||
|
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||||
|
export PYTHONIOENCODING=UTF-8
|
||||||
|
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
@ -0,0 +1,24 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
source path.sh
|
||||||
|
|
||||||
|
# prepare data
|
||||||
|
bash ./local/run_data.sh
|
||||||
|
|
||||||
|
# test pretrain model
|
||||||
|
bash ./local/run_test_golden.sh
|
||||||
|
|
||||||
|
# test pretain model
|
||||||
|
bash ./local/run_infer_golden.sh
|
||||||
|
|
||||||
|
# train model
|
||||||
|
bash ./local/run_train.sh
|
||||||
|
|
||||||
|
# test model
|
||||||
|
bash ./local/run_test.sh
|
||||||
|
|
||||||
|
# infer model
|
||||||
|
bash ./local/run_infer.sh
|
||||||
|
|
||||||
|
# tune model
|
||||||
|
bash ./local/run_tune.sh
|
@ -0,0 +1,8 @@
|
|||||||
|
export MAIN_ROOT=${PWD}/../../
|
||||||
|
|
||||||
|
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
|
||||||
|
export LC_ALL=C
|
||||||
|
|
||||||
|
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||||
|
export PYTHONIOENCODING=UTF-8
|
||||||
|
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
@ -0,0 +1,8 @@
|
|||||||
|
export MAIN_ROOT=${PWD}/../../
|
||||||
|
|
||||||
|
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
|
||||||
|
export LC_ALL=C
|
||||||
|
|
||||||
|
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||||
|
export PYTHONIOENCODING=UTF-8
|
||||||
|
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
@ -0,0 +1,43 @@
|
|||||||
|
#! /usr/bin/env bash
|
||||||
|
|
||||||
|
# download data, generate manifests
|
||||||
|
PYTHONPATH=.:$PYTHONPATH python3 local/librispeech.py \
|
||||||
|
--manifest_prefix="data/manifest" \
|
||||||
|
--target_dir="./dataset/librispeech" \
|
||||||
|
--full_download="True"
|
||||||
|
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "Prepare LibriSpeech failed. Terminated."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
cat data/manifest.train-* | shuf > data/manifest.train
|
||||||
|
|
||||||
|
|
||||||
|
# build vocabulary
|
||||||
|
python3 ${MAIN_ROOT}/tools/build_vocab.py \
|
||||||
|
--count_threshold=0 \
|
||||||
|
--vocab_path="data/vocab.txt" \
|
||||||
|
--manifest_paths="data/manifest.train"
|
||||||
|
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "Build vocabulary failed. Terminated."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
# compute mean and stddev for normalizer
|
||||||
|
python3 ${MAIN_ROOT}/tools/compute_mean_std.py \
|
||||||
|
--manifest_path="data/manifest.train" \
|
||||||
|
--num_samples=2000 \
|
||||||
|
--specgram_type="linear" \
|
||||||
|
--output_path="data/mean_std.npz"
|
||||||
|
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "Compute mean and stddev failed. Terminated."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
echo "LibriSpeech Data preparation done."
|
||||||
|
exit 0
|
@ -0,0 +1,8 @@
|
|||||||
|
export MAIN_ROOT=${PWD}/../../
|
||||||
|
|
||||||
|
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
|
||||||
|
export LC_ALL=C
|
||||||
|
|
||||||
|
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||||
|
export PYTHONIOENCODING=UTF-8
|
||||||
|
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
@ -0,0 +1,24 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
source path.sh
|
||||||
|
|
||||||
|
# prepare data
|
||||||
|
bash ./local/run_data.sh
|
||||||
|
|
||||||
|
# test pretrain model
|
||||||
|
bash ./local/run_test_golden.sh
|
||||||
|
|
||||||
|
# test pretain model
|
||||||
|
bash ./local/run_infer_golden.sh
|
||||||
|
|
||||||
|
# train model
|
||||||
|
bash ./local/run_train.sh
|
||||||
|
|
||||||
|
# test model
|
||||||
|
bash ./local/run_test.sh
|
||||||
|
|
||||||
|
# infer model
|
||||||
|
bash ./local/run_infer.sh
|
||||||
|
|
||||||
|
# tune model
|
||||||
|
bash ./local/run_tune.sh
|
@ -1,45 +0,0 @@
|
|||||||
#! /usr/bin/env bash
|
|
||||||
|
|
||||||
cd ../.. > /dev/null
|
|
||||||
|
|
||||||
# download data, generate manifests
|
|
||||||
PYTHONPATH=.:$PYTHONPATH python3 data/librispeech/librispeech.py \
|
|
||||||
--manifest_prefix='data/librispeech/manifest' \
|
|
||||||
--target_dir='./dataset/librispeech' \
|
|
||||||
--full_download='True'
|
|
||||||
|
|
||||||
if [ $? -ne 0 ]; then
|
|
||||||
echo "Prepare LibriSpeech failed. Terminated."
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
cat data/librispeech/manifest.train-* | shuf > data/librispeech/manifest.train
|
|
||||||
|
|
||||||
|
|
||||||
# build vocabulary
|
|
||||||
python3 tools/build_vocab.py \
|
|
||||||
--count_threshold=0 \
|
|
||||||
--vocab_path='data/librispeech/vocab.txt' \
|
|
||||||
--manifest_paths='data/librispeech/manifest.train'
|
|
||||||
|
|
||||||
if [ $? -ne 0 ]; then
|
|
||||||
echo "Build vocabulary failed. Terminated."
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
|
|
||||||
# compute mean and stddev for normalizer
|
|
||||||
python3 tools/compute_mean_std.py \
|
|
||||||
--manifest_path='data/librispeech/manifest.train' \
|
|
||||||
--num_samples=2000 \
|
|
||||||
--specgram_type='linear' \
|
|
||||||
--output_path='data/librispeech/mean_std.npz'
|
|
||||||
|
|
||||||
if [ $? -ne 0 ]; then
|
|
||||||
echo "Compute mean and stddev failed. Terminated."
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
|
|
||||||
echo "LibriSpeech Data preparation done."
|
|
||||||
exit 0
|
|
Loading…
Reference in new issue