parent
ba7cf0782e
commit
123d7a6f3f
@ -1,159 +0,0 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Prepare Librispeech ASR datasets.
|
||||
|
||||
Download, unpack and create manifest files.
|
||||
Manifest file is a json-format file with each line containing the
|
||||
meta data (i.e. audio filepath, transcript and audio duration)
|
||||
of each audio file in the data set.
|
||||
"""
|
||||
|
||||
import distutils.util
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import soundfile
|
||||
import json
|
||||
import codecs
|
||||
import io
|
||||
from data_utils.utility import download, unpack
|
||||
|
||||
URL_ROOT = "http://www.openslr.org/resources/12"
|
||||
URL_ROOT = "https://openslr.magicdatatech.com/resources/12"
|
||||
URL_TEST_CLEAN = URL_ROOT + "/test-clean.tar.gz"
|
||||
URL_TEST_OTHER = URL_ROOT + "/test-other.tar.gz"
|
||||
URL_DEV_CLEAN = URL_ROOT + "/dev-clean.tar.gz"
|
||||
URL_DEV_OTHER = URL_ROOT + "/dev-other.tar.gz"
|
||||
URL_TRAIN_CLEAN_100 = URL_ROOT + "/train-clean-100.tar.gz"
|
||||
URL_TRAIN_CLEAN_360 = URL_ROOT + "/train-clean-360.tar.gz"
|
||||
URL_TRAIN_OTHER_500 = URL_ROOT + "/train-other-500.tar.gz"
|
||||
|
||||
MD5_TEST_CLEAN = "32fa31d27d2e1cad72775fee3f4849a9"
|
||||
MD5_TEST_OTHER = "fb5a50374b501bb3bac4815ee91d3135"
|
||||
MD5_DEV_CLEAN = "42e2234ba48799c1f50f24a7926300a1"
|
||||
MD5_DEV_OTHER = "c8d0bcc9cca99d4f8b62fcc847357931"
|
||||
MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522"
|
||||
MD5_TRAIN_CLEAN_360 = "c0e676e450a7ff2f54aeade5171606fa"
|
||||
MD5_TRAIN_OTHER_500 = "d1a0fd59409feb2c614ce4d30c387708"
|
||||
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--target_dir",
|
||||
default='~/.cache/paddle/dataset/speech/libri',
|
||||
type=str,
|
||||
help="Directory to save the dataset. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--manifest_prefix",
|
||||
default="manifest",
|
||||
type=str,
|
||||
help="Filepath prefix for output manifests. (default: %(default)s)")
|
||||
parser.add_argument(
|
||||
"--full_download",
|
||||
default="True",
|
||||
type=distutils.util.strtobool,
|
||||
help="Download all datasets for Librispeech."
|
||||
" If False, only download a minimal requirement (test-clean, dev-clean"
|
||||
" train-clean-100). (default: %(default)s)")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def create_manifest(data_dir, manifest_path):
|
||||
"""Create a manifest json file summarizing the data set, with each line
|
||||
containing the meta data (i.e. audio filepath, transcription text, audio
|
||||
duration) of each audio file within the data set.
|
||||
"""
|
||||
print("Creating manifest %s ..." % manifest_path)
|
||||
json_lines = []
|
||||
for subfolder, _, filelist in sorted(os.walk(data_dir)):
|
||||
text_filelist = [
|
||||
filename for filename in filelist if filename.endswith('trans.txt')
|
||||
]
|
||||
if len(text_filelist) > 0:
|
||||
text_filepath = os.path.join(subfolder, text_filelist[0])
|
||||
for line in io.open(text_filepath, encoding="utf8"):
|
||||
segments = line.strip().split()
|
||||
text = ' '.join(segments[1:]).lower()
|
||||
audio_filepath = os.path.join(subfolder, segments[0] + '.flac')
|
||||
audio_data, samplerate = soundfile.read(audio_filepath)
|
||||
duration = float(len(audio_data)) / samplerate
|
||||
json_lines.append(
|
||||
json.dumps({
|
||||
'audio_filepath': audio_filepath,
|
||||
'duration': duration,
|
||||
'text': text
|
||||
}))
|
||||
with codecs.open(manifest_path, 'w', 'utf-8') as out_file:
|
||||
for line in json_lines:
|
||||
out_file.write(line + '\n')
|
||||
|
||||
|
||||
def prepare_dataset(url, md5sum, target_dir, manifest_path):
|
||||
"""Download, unpack and create summmary manifest file.
|
||||
"""
|
||||
if not os.path.exists(os.path.join(target_dir, "LibriSpeech")):
|
||||
# download
|
||||
filepath = download(url, md5sum, target_dir)
|
||||
# unpack
|
||||
unpack(filepath, target_dir)
|
||||
else:
|
||||
print("Skip downloading and unpacking. Data already exists in %s." %
|
||||
target_dir)
|
||||
# create manifest json file
|
||||
create_manifest(target_dir, manifest_path)
|
||||
|
||||
|
||||
def main():
|
||||
if args.target_dir.startswith('~'):
|
||||
args.target_dir = os.path.expanduser(args.target_dir)
|
||||
|
||||
prepare_dataset(
|
||||
url=URL_TEST_CLEAN,
|
||||
md5sum=MD5_TEST_CLEAN,
|
||||
target_dir=os.path.join(args.target_dir, "test-clean"),
|
||||
manifest_path=args.manifest_prefix + ".test-clean")
|
||||
prepare_dataset(
|
||||
url=URL_DEV_CLEAN,
|
||||
md5sum=MD5_DEV_CLEAN,
|
||||
target_dir=os.path.join(args.target_dir, "dev-clean"),
|
||||
manifest_path=args.manifest_prefix + ".dev-clean")
|
||||
if args.full_download:
|
||||
prepare_dataset(
|
||||
url=URL_TRAIN_CLEAN_100,
|
||||
md5sum=MD5_TRAIN_CLEAN_100,
|
||||
target_dir=os.path.join(args.target_dir, "train-clean-100"),
|
||||
manifest_path=args.manifest_prefix + ".train-clean-100")
|
||||
prepare_dataset(
|
||||
url=URL_TEST_OTHER,
|
||||
md5sum=MD5_TEST_OTHER,
|
||||
target_dir=os.path.join(args.target_dir, "test-other"),
|
||||
manifest_path=args.manifest_prefix + ".test-other")
|
||||
prepare_dataset(
|
||||
url=URL_DEV_OTHER,
|
||||
md5sum=MD5_DEV_OTHER,
|
||||
target_dir=os.path.join(args.target_dir, "dev-other"),
|
||||
manifest_path=args.manifest_prefix + ".dev-other")
|
||||
prepare_dataset(
|
||||
url=URL_TRAIN_CLEAN_360,
|
||||
md5sum=MD5_TRAIN_CLEAN_360,
|
||||
target_dir=os.path.join(args.target_dir, "train-clean-360"),
|
||||
manifest_path=args.manifest_prefix + ".train-clean-360")
|
||||
prepare_dataset(
|
||||
url=URL_TRAIN_OTHER_500,
|
||||
md5sum=MD5_TRAIN_OTHER_500,
|
||||
target_dir=os.path.join(args.target_dir, "train-other-500"),
|
||||
manifest_path=args.manifest_prefix + ".train-other-500")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,8 @@
|
||||
export MAIN_ROOT=${PWD}/../../
|
||||
|
||||
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
|
||||
export LC_ALL=C
|
||||
|
||||
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
|
||||
source path.sh
|
||||
|
||||
# prepare data
|
||||
bash ./local/run_data.sh
|
||||
|
||||
# test pretrain model
|
||||
bash ./local/run_test_golden.sh
|
||||
|
||||
# test pretain model
|
||||
bash ./local/run_infer_golden.sh
|
||||
|
||||
# train model
|
||||
bash ./local/run_train.sh
|
||||
|
||||
# test model
|
||||
bash ./local/run_test.sh
|
||||
|
||||
# infer model
|
||||
bash ./local/run_infer.sh
|
||||
|
||||
# tune model
|
||||
bash ./local/run_tune.sh
|
@ -0,0 +1,8 @@
|
||||
export MAIN_ROOT=${PWD}/../../
|
||||
|
||||
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
|
||||
export LC_ALL=C
|
||||
|
||||
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
@ -0,0 +1,8 @@
|
||||
export MAIN_ROOT=${PWD}/../../
|
||||
|
||||
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
|
||||
export LC_ALL=C
|
||||
|
||||
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
@ -0,0 +1,43 @@
|
||||
#! /usr/bin/env bash
|
||||
|
||||
# download data, generate manifests
|
||||
PYTHONPATH=.:$PYTHONPATH python3 local/librispeech.py \
|
||||
--manifest_prefix="data/manifest" \
|
||||
--target_dir="./dataset/librispeech" \
|
||||
--full_download="True"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Prepare LibriSpeech failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
cat data/manifest.train-* | shuf > data/manifest.train
|
||||
|
||||
|
||||
# build vocabulary
|
||||
python3 ${MAIN_ROOT}/tools/build_vocab.py \
|
||||
--count_threshold=0 \
|
||||
--vocab_path="data/vocab.txt" \
|
||||
--manifest_paths="data/manifest.train"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Build vocabulary failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
# compute mean and stddev for normalizer
|
||||
python3 ${MAIN_ROOT}/tools/compute_mean_std.py \
|
||||
--manifest_path="data/manifest.train" \
|
||||
--num_samples=2000 \
|
||||
--specgram_type="linear" \
|
||||
--output_path="data/mean_std.npz"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Compute mean and stddev failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
echo "LibriSpeech Data preparation done."
|
||||
exit 0
|
@ -0,0 +1,8 @@
|
||||
export MAIN_ROOT=${PWD}/../../
|
||||
|
||||
export PATH=${MAIN_ROOT}:${PWD}/tools:${PATH}
|
||||
export LC_ALL=C
|
||||
|
||||
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
|
||||
source path.sh
|
||||
|
||||
# prepare data
|
||||
bash ./local/run_data.sh
|
||||
|
||||
# test pretrain model
|
||||
bash ./local/run_test_golden.sh
|
||||
|
||||
# test pretain model
|
||||
bash ./local/run_infer_golden.sh
|
||||
|
||||
# train model
|
||||
bash ./local/run_train.sh
|
||||
|
||||
# test model
|
||||
bash ./local/run_test.sh
|
||||
|
||||
# infer model
|
||||
bash ./local/run_infer.sh
|
||||
|
||||
# tune model
|
||||
bash ./local/run_tune.sh
|
@ -1,45 +0,0 @@
|
||||
#! /usr/bin/env bash
|
||||
|
||||
cd ../.. > /dev/null
|
||||
|
||||
# download data, generate manifests
|
||||
PYTHONPATH=.:$PYTHONPATH python3 data/librispeech/librispeech.py \
|
||||
--manifest_prefix='data/librispeech/manifest' \
|
||||
--target_dir='./dataset/librispeech' \
|
||||
--full_download='True'
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Prepare LibriSpeech failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
cat data/librispeech/manifest.train-* | shuf > data/librispeech/manifest.train
|
||||
|
||||
|
||||
# build vocabulary
|
||||
python3 tools/build_vocab.py \
|
||||
--count_threshold=0 \
|
||||
--vocab_path='data/librispeech/vocab.txt' \
|
||||
--manifest_paths='data/librispeech/manifest.train'
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Build vocabulary failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
# compute mean and stddev for normalizer
|
||||
python3 tools/compute_mean_std.py \
|
||||
--manifest_path='data/librispeech/manifest.train' \
|
||||
--num_samples=2000 \
|
||||
--specgram_type='linear' \
|
||||
--output_path='data/librispeech/mean_std.npz'
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Compute mean and stddev failed. Terminated."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
echo "LibriSpeech Data preparation done."
|
||||
exit 0
|
Loading…
Reference in new issue