parent
1c4e4e7d9c
commit
12339daddb
@ -1 +0,0 @@
|
|||||||
../../../../speechx/speechx/kaldi/base
|
|
@ -1 +0,0 @@
|
|||||||
../../../../speechx/speechx/kaldi/feat
|
|
@ -1 +0,0 @@
|
|||||||
../../../../speechx/speechx/kaldi/matrix
|
|
@ -1 +0,0 @@
|
|||||||
../../../../speechx/speechx/kaldi/util
|
|
@ -0,0 +1 @@
|
|||||||
|
../../common_utils
|
@ -0,0 +1,136 @@
|
|||||||
|
import os.path
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import json
|
||||||
|
|
||||||
|
from parameterized import param, parameterized
|
||||||
|
#code is from:https://github.com/pytorch/audio/blob/main/test/torchaudio_unittest/common_utils/data_utils.py with modification.
|
||||||
|
|
||||||
|
_TEST_DIR_PATH = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
|
||||||
|
|
||||||
|
|
||||||
|
def get_asset_path(*paths):
|
||||||
|
"""Return full path of a test asset"""
|
||||||
|
return os.path.join(_TEST_DIR_PATH, "assets", *paths)
|
||||||
|
|
||||||
|
def load_params(*paths):
|
||||||
|
with open(get_asset_path(*paths), "r") as file:
|
||||||
|
return [param(json.loads(line)) for line in file]
|
||||||
|
|
||||||
|
def load_effects_params(*paths):
|
||||||
|
params = []
|
||||||
|
with open(*paths, "r") as file:
|
||||||
|
for line in file:
|
||||||
|
data = json.loads(line)
|
||||||
|
for effect in data["effects"]:
|
||||||
|
for i, arg in enumerate(effect):
|
||||||
|
if arg.startswith("<ASSET_DIR>"):
|
||||||
|
effect[i] = arg.replace("<ASSET_DIR>", get_asset_path())
|
||||||
|
params.append(param(data))
|
||||||
|
return params
|
||||||
|
|
||||||
|
def convert_tensor_encoding(
|
||||||
|
tensor: paddle.tensor,
|
||||||
|
dtype: paddle.dtype,
|
||||||
|
):
|
||||||
|
"""Convert input tensor with values between -1 and 1 to integer encoding
|
||||||
|
Args:
|
||||||
|
tensor: input tensor, assumed between -1 and 1
|
||||||
|
dtype: desired output tensor dtype
|
||||||
|
Returns:
|
||||||
|
Tensor: shape of (n_channels, sample_rate * duration)
|
||||||
|
"""
|
||||||
|
if dtype == paddle.int32:
|
||||||
|
tensor *= (tensor > 0) * 2147483647 + (tensor < 0) * 2147483648
|
||||||
|
if dtype == paddle.int16:
|
||||||
|
tensor *= (tensor > 0) * 32767 + (tensor < 0) * 32768
|
||||||
|
if dtype == paddle.uint8:
|
||||||
|
tensor *= (tensor > 0) * 127 + (tensor < 0) * 128
|
||||||
|
tensor += 128
|
||||||
|
tensor = paddle.to_tensor(tensor, dtype)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
|
#def get_whitenoise(
|
||||||
|
#*,
|
||||||
|
#sample_rate: int = 16000,
|
||||||
|
#duration: float = 1, # seconds
|
||||||
|
#n_channels: int = 1,
|
||||||
|
#seed: int = 0,
|
||||||
|
#dtype: Union[str, paddle.dtype] = "float32",
|
||||||
|
#device: Union[str, paddle.device] = "cpu",
|
||||||
|
#channels_first=True,
|
||||||
|
#scale_factor: float = 1,
|
||||||
|
#):
|
||||||
|
#"""Generate pseudo audio data with whitenoise
|
||||||
|
#Args:
|
||||||
|
#sample_rate: Sampling rate
|
||||||
|
#duration: Length of the resulting Tensor in seconds.
|
||||||
|
#n_channels: Number of channels
|
||||||
|
#seed: Seed value used for random number generation.
|
||||||
|
#Note that this function does not modify global random generator state.
|
||||||
|
#dtype: Torch dtype
|
||||||
|
#device: device
|
||||||
|
#channels_first: whether first dimension is n_channels
|
||||||
|
#scale_factor: scale the Tensor before clamping and quantization
|
||||||
|
#Returns:
|
||||||
|
#Tensor: shape of (n_channels, sample_rate * duration)
|
||||||
|
#"""
|
||||||
|
#if isinstance(dtype, str):
|
||||||
|
#dtype = getattr(paddle, dtype)
|
||||||
|
#if dtype not in [paddle.float64, paddle.float32, paddle.int32, paddle.int16, paddle.uint8]:
|
||||||
|
#raise NotImplementedError(f"dtype {dtype} is not supported.")
|
||||||
|
## According to the doc, folking rng on all CUDA devices is slow when there are many CUDA devices,
|
||||||
|
## so we only fork on CPU, generate values and move the data to the given device
|
||||||
|
#with paddle.random.fork_rng([]):
|
||||||
|
#paddle.random.manual_seed(seed)
|
||||||
|
#tensor = paddle.randn([n_channels, int(sample_rate * duration)], dtype=paddle.float32, device="cpu")
|
||||||
|
#tensor /= 2.0
|
||||||
|
#tensor *= scale_factor
|
||||||
|
#tensor.clamp_(-1.0, 1.0)
|
||||||
|
#if not channels_first:
|
||||||
|
#tensor = tensor.t()
|
||||||
|
|
||||||
|
#tensor = tensor.to(device)
|
||||||
|
|
||||||
|
#return convert_tensor_encoding(tensor, dtype)
|
||||||
|
|
||||||
|
|
||||||
|
def get_sinusoid(
|
||||||
|
*,
|
||||||
|
frequency: float = 300,
|
||||||
|
sample_rate: int = 16000,
|
||||||
|
duration: float = 1, # seconds
|
||||||
|
n_channels: int = 1,
|
||||||
|
dtype: str = "float32",
|
||||||
|
device: str = "cpu",
|
||||||
|
channels_first: bool = True,
|
||||||
|
):
|
||||||
|
"""Generate pseudo audio data with sine wave.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frequency: Frequency of sine wave
|
||||||
|
sample_rate: Sampling rate
|
||||||
|
duration: Length of the resulting Tensor in seconds.
|
||||||
|
n_channels: Number of channels
|
||||||
|
dtype: Torch dtype
|
||||||
|
device: device
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: shape of (n_channels, sample_rate * duration)
|
||||||
|
"""
|
||||||
|
if isinstance(dtype, str):
|
||||||
|
dtype = getattr(paddle, dtype)
|
||||||
|
pie2 = 2 * 3.141592653589793
|
||||||
|
end = pie2 * frequency * duration
|
||||||
|
num_frames = int(sample_rate * duration)
|
||||||
|
# Randomize the initial phase. (except the first channel)
|
||||||
|
theta0 = pie2 * paddle.randn([n_channels, 1], dtype=paddle.float32)
|
||||||
|
theta0[0, :] = 0
|
||||||
|
theta = paddle.linspace(0, end, num_frames, dtype=paddle.float32)
|
||||||
|
theta = theta0 + theta
|
||||||
|
tensor = paddle.sin(theta)
|
||||||
|
if not channels_first:
|
||||||
|
tensor = paddle.t(tensor)
|
||||||
|
return convert_tensor_encoding(tensor, dtype)
|
@ -0,0 +1,116 @@
|
|||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoding(dtype):
|
||||||
|
encodings = {
|
||||||
|
"float32": "floating-point",
|
||||||
|
"int32": "signed-integer",
|
||||||
|
"int16": "signed-integer",
|
||||||
|
"uint8": "unsigned-integer",
|
||||||
|
}
|
||||||
|
return encodings[dtype]
|
||||||
|
|
||||||
|
|
||||||
|
def get_bit_depth(dtype):
|
||||||
|
bit_depths = {
|
||||||
|
"float32": 32,
|
||||||
|
"int32": 32,
|
||||||
|
"int16": 16,
|
||||||
|
"uint8": 8,
|
||||||
|
}
|
||||||
|
return bit_depths[dtype]
|
||||||
|
|
||||||
|
|
||||||
|
def gen_audio_file(
|
||||||
|
path,
|
||||||
|
sample_rate,
|
||||||
|
num_channels,
|
||||||
|
*,
|
||||||
|
encoding=None,
|
||||||
|
bit_depth=None,
|
||||||
|
compression=None,
|
||||||
|
attenuation=None,
|
||||||
|
duration=1,
|
||||||
|
comment_file=None,
|
||||||
|
):
|
||||||
|
"""Generate synthetic audio file with `sox` command."""
|
||||||
|
if path.endswith(".wav"):
|
||||||
|
warnings.warn("Use get_wav_data and save_wav to generate wav file for accurate result.")
|
||||||
|
command = [
|
||||||
|
"sox",
|
||||||
|
"-V3", # verbose
|
||||||
|
"--no-dither", # disable automatic dithering
|
||||||
|
"-R",
|
||||||
|
# -R is supposed to be repeatable, though the implementation looks suspicious
|
||||||
|
# and not setting the seed to a fixed value.
|
||||||
|
# https://fossies.org/dox/sox-14.4.2/sox_8c_source.html
|
||||||
|
# search "sox_globals.repeatable"
|
||||||
|
]
|
||||||
|
if bit_depth is not None:
|
||||||
|
command += ["--bits", str(bit_depth)]
|
||||||
|
command += [
|
||||||
|
"--rate",
|
||||||
|
str(sample_rate),
|
||||||
|
"--null", # no input
|
||||||
|
"--channels",
|
||||||
|
str(num_channels),
|
||||||
|
]
|
||||||
|
if compression is not None:
|
||||||
|
command += ["--compression", str(compression)]
|
||||||
|
if bit_depth is not None:
|
||||||
|
command += ["--bits", str(bit_depth)]
|
||||||
|
if encoding is not None:
|
||||||
|
command += ["--encoding", str(encoding)]
|
||||||
|
if comment_file is not None:
|
||||||
|
command += ["--comment-file", str(comment_file)]
|
||||||
|
command += [
|
||||||
|
str(path),
|
||||||
|
"synth",
|
||||||
|
str(duration), # synthesizes for the given duration [sec]
|
||||||
|
"sawtooth",
|
||||||
|
"1",
|
||||||
|
# saw tooth covers the both ends of value range, which is a good property for test.
|
||||||
|
# similar to linspace(-1., 1.)
|
||||||
|
# this introduces bigger boundary effect than sine when converted to mp3
|
||||||
|
]
|
||||||
|
if attenuation is not None:
|
||||||
|
command += ["vol", f"-{attenuation}dB"]
|
||||||
|
print(" ".join(command), file=sys.stderr)
|
||||||
|
subprocess.run(command, check=True)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_audio_file(src_path, dst_path, *, encoding=None, bit_depth=None, compression=None):
|
||||||
|
"""Convert audio file with `sox` command."""
|
||||||
|
command = ["sox", "-V3", "--no-dither", "-R", str(src_path)]
|
||||||
|
if encoding is not None:
|
||||||
|
command += ["--encoding", str(encoding)]
|
||||||
|
if bit_depth is not None:
|
||||||
|
command += ["--bits", str(bit_depth)]
|
||||||
|
if compression is not None:
|
||||||
|
command += ["--compression", str(compression)]
|
||||||
|
command += [dst_path]
|
||||||
|
print(" ".join(command), file=sys.stderr)
|
||||||
|
subprocess.run(command, check=True)
|
||||||
|
|
||||||
|
|
||||||
|
def _flattern(effects):
|
||||||
|
if not effects:
|
||||||
|
return effects
|
||||||
|
if isinstance(effects[0], str):
|
||||||
|
return effects
|
||||||
|
return [item for sublist in effects for item in sublist]
|
||||||
|
|
||||||
|
|
||||||
|
def run_sox_effect(input_file, output_file, effect, *, output_sample_rate=None, output_bitdepth=None):
|
||||||
|
"""Run sox effects"""
|
||||||
|
effect = _flattern(effect)
|
||||||
|
command = ["sox", "-V", "--no-dither", input_file]
|
||||||
|
if output_bitdepth:
|
||||||
|
command += ["--bits", str(output_bitdepth)]
|
||||||
|
command += [output_file] + effect
|
||||||
|
if output_sample_rate:
|
||||||
|
command += ["rate", str(output_sample_rate)]
|
||||||
|
print(" ".join(command))
|
||||||
|
subprocess.run(command, check=True)
|
Loading…
Reference in new issue