TLG build pass

pull/729/head
Hui Zhang 4 years ago
parent f5369abdbe
commit 104743cccc

@ -17,7 +17,6 @@ import os
import socket
import sys
import auto_log
from paddle import inference
FORMAT_STR = '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
@ -156,6 +155,7 @@ class Autolog:
batch_size,
model_name="DeepSpeech",
model_precision="fp32"):
import auto_log
pid = os.getpid()
gpu_id = int(os.environ['CUDA_VISIBLE_DEVICES'].split(',')[0])
infer_config = inference.Config()

@ -0,0 +1,58 @@
#!/bin/bash
# To be run from one directory above this script.
. ./path.sh
text=data/local/lm/text
lexicon=data/local/dict/lexicon.txt
for f in "$text" "$lexicon"; do
[ ! -f $x ] && echo "$0: No such file $f" && exit 1;
done
# Check SRILM tools
if ! which ngram-count > /dev/null; then
echo "srilm tools are not found, please download it and install it from: "
echo "http://www.speech.sri.com/projects/srilm/download.html"
echo "Then add the tools to your PATH"
exit 1
fi
# This script takes no arguments. It assumes you have already run
# aishell_data_prep.sh.
# It takes as input the files
# data/local/lm/text
# data/local/dict/lexicon.txt
dir=data/local/lm
mkdir -p $dir
cleantext=$dir/text.no_oov
cat $text | awk -v lex=$lexicon 'BEGIN{while((getline<lex) >0){ seen[$1]=1; } }
{for(n=1; n<=NF;n++) { if (seen[$n]) { printf("%s ", $n); } else {printf("<SPOKEN_NOISE> ");} } printf("\n");}' \
> $cleantext || exit 1;
cat $cleantext | awk '{for(n=2;n<=NF;n++) print $n; }' | sort | uniq -c | \
sort -nr > $dir/word.counts || exit 1;
# Get counts from acoustic training transcripts, and add one-count
# for each word in the lexicon (but not silence, we don't want it
# in the LM-- we'll add it optionally later).
cat $cleantext | awk '{for(n=2;n<=NF;n++) print $n; }' | \
cat - <(grep -w -v '!SIL' $lexicon | awk '{print $1}') | \
sort | uniq -c | sort -nr > $dir/unigram.counts || exit 1;
cat $dir/unigram.counts | awk '{print $2}' | cat - <(echo "<s>"; echo "</s>" ) > $dir/wordlist
heldout_sent=10000 # Don't change this if you want result to be comparable with
# kaldi_lm results
mkdir -p $dir
cat $cleantext | awk '{for(n=2;n<=NF;n++){ printf $n; if(n<NF) printf " "; else print ""; }}' | \
head -$heldout_sent > $dir/heldout
cat $cleantext | awk '{for(n=2;n<=NF;n++){ printf $n; if(n<NF) printf " "; else print ""; }}' | \
tail -n +$heldout_sent > $dir/train
ngram-count -text $dir/train -order 3 -limit-vocab -vocab $dir/wordlist -unk \
-map-unk "<UNK>" -kndiscount -interpolate -lm $dir/lm.arpa
ngram -lm $dir/lm.arpa -ppl $dir/heldout

@ -0,0 +1,52 @@
#!/bin/bash
set -eo pipefail
stage=-1
stop_stage=100
corpus=aishell
lmtype=srilm
source utils/parse_options.sh
data=${MAIN_ROOT}/examples/dataset/${corpus}
lexicon=$data/resource_aishell/lexicon.txt
text=$data/data_aishell/transcript/aishell_transcript_v0.8.txt
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# 7.1 Prepare dict
unit_file=data/vocab.txt
mkdir -p data/local/dict
cp $unit_file data/local/dict/units.txt
utils/fst/prepare_dict.py \
--unit_file $unit_file \
--in_lexicon ${lexicon} \
--out_lexicon data/local/dict/lexicon.txt
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# 7.2 Train lm
lm=data/local/lm
mkdir -p data/train
mkdir -p $lm
utils/manifest_key_value.py \
--manifest_path data/manifest.train \
--output_path data/train
utils/filter_scp.pl data/train/text \
$text > $lm/text
if [ $lmtype == 'srilm' ];then
local/aishell_train_lms.sh
else
utils/ngram_train.sh --order 3 $lm/text $lm/lm.arpa
fi
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# 7.3 Build decoding TLG
utils/fst/compile_lexicon_token_fst.sh \
data/local/dict data/local/tmp data/local/lang
utils/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1;
fi
echo "Aishell build TLG done."
exit 0

@ -9,6 +9,19 @@ export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/
# model exp
MODEL=u2
export BIN_DIR=${MAIN_ROOT}/deepspeech/exps/${MODEL}/bin
export LIBLBFGS=/workspace/zhanghui/asr/wenet-210713/tools/liblbfgs-1.10
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${LIBLBFGS}/lib/.libs
export SRILM=/workspace/zhanghui/asr/wenet-210713/tools/srilm
export PATH=${PATH}:${SRILM}/bin:${SRILM}/bin/i686-m64
# Kaldi
export KALDI_ROOT=/workspace/zhanghui/asr/kaldi
[ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ROOT/tools/env.sh
export PATH=$PWD/utils/:$KALDI_ROOT/tools/openfst/bin:$PWD:$PATH
[ ! -f $KALDI_ROOT/tools/config/common_path.sh ] && echo >&2 "The standard file $KALDI_ROOT/tools/config/common_path.sh is not present -> Exit!" && exit 1
. $KALDI_ROOT/tools/config/common_path.sh

@ -38,43 +38,13 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
# if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# # export ckpt avg_n
# CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
# fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi
# Optionally, you can add LM and test it with runtime.
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
# 7.1 Prepare dict
unit_file=data/vocab.txt
mkdir -p data/local/dict
cp $unit_file data/local/dict/units.txt
utils/fst/prepare_dict.py $unit_file ${data}/resource_aishell/lexicon.txt \
data/local/dict/lexicon.txt
# 7.2 Train lm
lm=data/local/lm
mkdir -p $lm
utils/filter_scp.pl data/train/text \
$data/data_aishell/transcript/aishell_transcript_v0.8.txt > $lm/text
local/aishell_train_lms.sh
# 7.3 Build decoding TLG
utils/fst/compile_lexicon_token_fst.sh \
data/local/dict data/local/tmp data/local/lang
utils/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1;
# # 7.4 Decoding with runtime
# # reverse_weight only works for u2++ model and only left to right decoder is used when it is set to 0.0.
# dir=exp/conformer
# reverse_weight=0.0
# chunk_size=-1
# ./tools/decode.sh --nj 16 \
# --beam 15.0 --lattice_beam 7.5 --max_active 7000 \
# --blank_skip_thresh 0.98 --ctc_weight 0.5 --rescoring_weight 1.0 \
# --reverse_weight $reverse_weight --chunk_size $chunk_size \
# --fst_path data/lang_test/TLG.fst \
# data/test/wav.scp data/test/text $dir/final.zip \
# data/lang_test/words.txt $dir/lm_with_runtime
# # See $dir/lm_with_runtime for wer
# train lm and build TLG
./local/tlg.sh --corpus aishell --lmtype srilm
fi

@ -0,0 +1 @@
../../../utils

@ -0,0 +1,13 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,87 @@
#!/usr/bin/env perl
# Copyright 2010-2012 Microsoft Corporation
# Johns Hopkins University (author: Daniel Povey)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
# WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
# MERCHANTABLITY OR NON-INFRINGEMENT.
# See the Apache 2 License for the specific language governing permissions and
# limitations under the License.
# This script takes a list of utterance-ids or any file whose first field
# of each line is an utterance-id, and filters an scp
# file (or any file whose "n-th" field is an utterance id), printing
# out only those lines whose "n-th" field is in id_list. The index of
# the "n-th" field is 1, by default, but can be changed by using
# the -f <n> switch
$exclude = 0;
$field = 1;
$shifted = 0;
do {
$shifted=0;
if ($ARGV[0] eq "--exclude") {
$exclude = 1;
shift @ARGV;
$shifted=1;
}
if ($ARGV[0] eq "-f") {
$field = $ARGV[1];
shift @ARGV; shift @ARGV;
$shifted=1
}
} while ($shifted);
if(@ARGV < 1 || @ARGV > 2) {
die "Usage: filter_scp.pl [--exclude] [-f <field-to-filter-on>] id_list [in.scp] > out.scp \n" .
"Prints only the input lines whose f'th field (default: first) is in 'id_list'.\n" .
"Note: only the first field of each line in id_list matters. With --exclude, prints\n" .
"only the lines that were *not* in id_list.\n" .
"Caution: previously, the -f option was interpreted as a zero-based field index.\n" .
"If your older scripts (written before Oct 2014) stopped working and you used the\n" .
"-f option, add 1 to the argument.\n" .
"See also: utils/filter_scp.pl .\n";
}
$idlist = shift @ARGV;
open(F, "<$idlist") || die "Could not open id-list file $idlist";
while(<F>) {
@A = split;
@A>=1 || die "Invalid id-list file line $_";
$seen{$A[0]} = 1;
}
if ($field == 1) { # Treat this as special case, since it is common.
while(<>) {
$_ =~ m/\s*(\S+)\s*/ || die "Bad line $_, could not get first field.";
# $1 is what we filter on.
if ((!$exclude && $seen{$1}) || ($exclude && !defined $seen{$1})) {
print $_;
}
}
} else {
while(<>) {
@A = split;
@A > 0 || die "Invalid scp file line $_";
@A >= $field || die "Invalid scp file line $_";
if ((!$exclude && $seen{$A[$field-1]}) || ($exclude && !defined $seen{$A[$field-1]})) {
print $_;
}
}
}
# tests:
# the following should print "foo 1"
# ( echo foo 1; echo bar 2 ) | utils/filter_scp.pl <(echo foo)
# the following should print "bar 2".
# ( echo foo 1; echo bar 2 ) | utils/filter_scp.pl -f 2 <(echo 2)

@ -57,7 +57,7 @@ cat $srcdir/units.txt | awk '{print $1}' > $tmpdir/units.list
# ctc_token_fst_corrected is too big and too slow for character based chinese modeling,
# so here just use simple ctc_token_fst
utils/fst/ctc_token_fst.py $dir/tokens.txt | \
utils/fst/ctc_token_fst.py --token_file $dir/tokens.txt | \
fstcompile --isymbols=$dir/tokens.txt --osymbols=$dir/tokens.txt --keep_isymbols=false --keep_osymbols=false | \
fstarcsort --sort_type=olabel > $dir/T.fst || exit 1;

@ -1,6 +1,5 @@
#!/usr/bin/env python3
import argparse
import sys
def main(args):
@ -14,7 +13,7 @@ def main(args):
print('2 0 <eps> <eps>')
# linking `token` between node 1 and node 2
with open(sys.token_file, 'r') as fin:
with open(args.token_file, 'r') as fin:
node = 3
for entry in fin:
fields = entry.strip().split(' ')
@ -46,6 +45,5 @@ if __name__ == '__main__':
help='e2e model token file. line: token(char/phone/spm/disambigous)')
args = parser.parse_args()
print(args)
main(args)

@ -73,8 +73,6 @@ if __name__ == "__main__":
'--token_file',
required=True,
help='e2e model token file. line: token(char/phone/spm/disambigous)')
args = parser.parse_args()
print(args)
main(args)

@ -1,13 +1,5 @@
#!/usr/bin/env python3
import argparse
import sys
def contain_oov(units):
for unit in units:
if unit not in unit_table:
return True
return False
def main(args):
@ -18,6 +10,12 @@ def main(args):
unit = line.strip()
unit_table.add(unit)
def contain_oov(units):
for unit in units:
if unit not in unit_table:
return True
return False
# load spm model
bpemode = args.bpemodel
if bpemode:
@ -27,8 +25,8 @@ def main(args):
# used to filter polyphone
lexicon_table = set()
with open(sys.in_lexicon, 'r') as fin, \
open(sys.out_lexicon, 'w') as fout:
with open(args.in_lexicon, 'r') as fin, \
open(args.out_lexicon, 'w') as fout:
for line in fin:
word = line.split()[0]
if word == 'SIL' and not bpemode: # `sil` might be a valid piece in bpemodel

@ -31,8 +31,6 @@ if __name__ == "__main__":
'--token_file',
required=True,
help='e2e model token file. line: token(char/phone/spm/disambigous)')
args = parser.parse_args()
print(args)
main(args)

@ -0,0 +1,64 @@
#!/usr/bin/env python3
"""Manifest file to key-value files."""
import argparse
import functools
from pathlib import Path
from utils.utility import add_arguments
from utils.utility import print_arguments
from utils.utility import read_manifest
def main(args):
print_arguments(args, globals())
count = 0
outdir = Path(args.output_path)
wav_scp = outdir / 'wav.scp'
dur_scp = outdir / 'duration'
text_scp = outdir / 'text'
manifest_jsons = read_manifest(args.manifest_path)
with wav_scp.open('w') as fwav, dur_scp.open('w') as fdur, text_scp.open(
'w') as ftxt:
for line_json in manifest_jsons:
utt = line_json['utt']
feat = line_json['feat']
file_ext = Path(feat).suffix # .wav
text = line_json['text']
feat_shape = line_json['feat_shape']
dur = feat_shape[0]
feat_dim = feat_shape[1]
if 'token' in line_json:
tokens = line_json['token']
tokenids = line_json['token_id']
token_shape = line_json['token_shape']
token_len = token_shape[0]
vocab_dim = token_shape[1]
if file_ext == '.wav':
fwav.write(f"{utt} {feat}\n")
fdur.write(f"{utt} {dur}\n")
ftxt.write(f"{utt} {text}\n")
count += 1
print(f"Examples number: {count}")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('manifest_path', str,
'data/librispeech/manifest.train',
"Filepath of manifest to compute normalizer's mean and stddev.")
add_arg('output_path', str,
'data/train',
"dir path to dump wav.scp/duaration/text files.")
# yapf: disable
args = parser.parse_args()
main(args)

@ -22,7 +22,7 @@ lmbin=${2}.klm.bin
# https://kheafield.com/code/kenlm/estimation/
echo "build arpa lm."
lmplz -o ${order} -S ${mem} --prune ${prune} < ${text} >${arpa} || { echo "train kenlm error!"; exit -1; }
lmplz -o ${order} -S ${mem} --prune ${prune} < ${text} > ${arpa} || { echo "train kenlm error!"; exit -1; }
# https://kheafield.com/code/kenlm/
echo "build binary lm."

@ -11,19 +11,95 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import json
import os
import tarfile
import zipfile
from typing import Text
from paddle.dataset.common import md5file
__all__ = [
"check_md5sum", "getfile_insensitive", "download_multi", "download",
"unpack", "unzip"
"unpack", "unzip", "md5file", "print_arguments", "add_arguments",
"read_manifest"
]
def read_manifest(manifest_path):
"""Load and parse manifest file.
Args:
manifest_path ([type]): Manifest file to load and parse.
Raises:
IOError: If failed to parse the manifest.
Returns:
List[dict]: Manifest parsing results.
"""
manifest = []
for json_line in open(manifest_path, 'r'):
try:
json_data = json.loads(json_line)
except Exception as e:
raise IOError("Error reading manifest: %s" % str(e))
return manifest
def print_arguments(args, info=None):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
filename = ""
if info:
filename = info["__file__"]
filename = os.path.basename(filename)
print(f"----------- {filename} Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("-----------------------------------------------------------")
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def md5file(fname):
hash_md5 = hashlib.md5()
f = open(fname, "rb")
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
f.close()
return hash_md5.hexdigest()
def getfile_insensitive(path):
"""Get the actual file path when given insensitive filename."""
directory, filename = os.path.split(path)

Loading…
Cancel
Save