update aishell/librispeech transformer result; wenetspeech pretrain conformer result

pull/1012/head
Hui Zhang 3 years ago
parent a7858551b7
commit 0defc658e1

@ -19,3 +19,13 @@ Need set `decoding.decoding_chunk_size=16` when decoding.
| conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | ctc_greedy_search | 16, -1 | - | 0.070806 | | conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | ctc_greedy_search | 16, -1 | - | 0.070806 |
| conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | ctc_prefix_beam_search | 16, -1 | - | 0.070739 | | conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | ctc_prefix_beam_search | 16, -1 | - | 0.070739 |
| conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | attention_rescoring | 16, -1 | - | 0.059400 | | conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | attention_rescoring | 16, -1 | - | 0.059400 |
## Transformer
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| transformer | 31.95M | conf/transformer.yaml | spec_aug | test | attention | 3.858648955821991 | 0.057293 |
| transformer | 31.95M | conf/transformer.yaml | spec_aug | test | ctc_greedy_search | 3.858648955821991 | 0.061837 |
| transformer | 31.95M | conf/transformer.yaml | spec_aug | test | ctc_prefix_beam_search | 3.858648955821991 | 0.061685 |
| transformer | 31.95M | conf/transformer.yaml | spec_aug | test | attention_rescoring | 3.858648955821991 | 0.053844 |

@ -73,7 +73,7 @@ model:
training: training:
n_epoch: 240 n_epoch: 120
accum_grad: 2 accum_grad: 2
global_grad_clip: 5.0 global_grad_clip: 5.0
optim: adam optim: adam

@ -23,8 +23,6 @@ fi
# exit 1 # exit 1
#fi #fi
for type in attention_rescoring; do for type in attention_rescoring; do
echo "decoding ${type}" echo "decoding ${type}"
batch_size=1 batch_size=1

@ -21,7 +21,7 @@
## Transformer ## Transformer
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER | | Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- | | --- | --- | --- | --- | --- | --- | --- | --- |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean | attention | 7.404532432556152 | 0.056204 | | transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention | 6.805267604192098, | 0.049795 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean | ctc_greedy_search | 7.404532432556152 | 0.058658 | | transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_greedy_search | 6.805267604192098, | 0.054892 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean | ctc_prefix_beam_search | 7.404532432556152 | 0.058278 | | transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_prefix_beam_search | 6.805267604192098, | 0.054531 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean | attention_rescoring | 7.404532432556152 | 0.045591 | | transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention_rescoring | 6.805267604192098, | 0.042244 |

@ -0,0 +1,54 @@
# [WenetSpeech](https://github.com/wenet-e2e/WenetSpeech)
A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition
## Description
### Creation
All the data are collected from YouTube and Podcast. Optical character recognition (OCR) and automatic speech recognition (ASR) techniques are adopted to label each YouTube and Podcast recording, respectively. To improve the quality of the corpus, we use a novel end-to-end label error detection method to further validate and filter the data.
### Categories
In summary, WenetSpeech groups all data into 3 categories, as the following table shows:
| Set | Hours | Confidence | Usage |
|------------|-------|-------------|---------------------------------------|
| High Label | 10005 | >=0.95 | Supervised Training |
| Weak Label | 2478 | [0.6, 0.95] | Semi-supervised or noise training |
| Unlabel | 9952 | / | Unsupervised training or Pre-training |
| In Total | 22435 | / | All above |
### High Label Data
We classify the high label into 10 groups according to its domain, speaking style, and scenarios.
| Domain | Youtube | Podcast | Total |
|-------------|---------|---------|--------|
| audiobook | 0 | 250.9 | 250.9 |
| commentary | 112.6 | 135.7 | 248.3 |
| documentary | 386.7 | 90.5 | 477.2 |
| drama | 4338.2 | 0 | 4338.2 |
| interview | 324.2 | 614 | 938.2 |
| news | 0 | 868 | 868 |
| reading | 0 | 1110.2 | 1110.2 |
| talk | 204 | 90.7 | 294.7 |
| variety | 603.3 | 224.5 | 827.8 |
| others | 144 | 507.5 | 651.5 |
| Total | 6113 | 3892 | 10005 |
As shown in the following table, we provide 3 training subsets, namely `S`, `M` and `L` for building ASR systems on different data scales.
| Training Subsets | Confidence | Hours |
|------------------|-------------|-------|
| L | [0.95, 1.0] | 10005 |
| M | 1.0 | 1000 |
| S | 1.0 | 100 |
### Evaluation Sets
| Evaluation Sets | Hours | Source | Description |
|-----------------|-------|--------------|-----------------------------------------------------------------------------------------|
| DEV | 20 | Internet | Specially designed for some speech tools which require cross-validation set in training |
| TEST\_NET | 23 | Internet | Match test |
| TEST\_MEETING | 15 | Real meeting | Mismatch test which is a far-field, conversational, spontaneous, and meeting dataset |

@ -0,0 +1,3 @@
data
exp
*.profile

@ -0,0 +1,24 @@
# WenetSpeech
## Conformer
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| conformer | 32.52 M | conf/conformer.yaml | spec_aug | dev | attention | | |
| conformer | 32.52 M | conf/conformer.yaml | spec_aug | test net | ctc_greedy_search | | |
| conformer | 32.52 M | conf/conformer.yaml | spec_aug | test meeting | ctc_prefix_beam_search | | |
| conformer | 32.52 M | conf/conformer.yaml | spec_aug | test net | attention_rescoring | | |
## Conformer Pretrain Model
Pretrain model from http://mobvoi-speech-public.ufile.ucloud.cn/public/wenet/wenetspeech/20211025_conformer_exp.tar.gz
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| conformer | 32.52 M | conf/conformer.yaml | spec_aug | aishell1 | attention | - | 0.048456 |
| conformer | 32.52 M | conf/conformer.yaml | spec_aug | aishell1 | ctc_greedy_search | - | 0.052534 |
| conformer | 32.52 M | conf/conformer.yaml | spec_aug | aishell1 | ctc_prefix_beam_search | - | 0.052915 |
| conformer | 32.52 M | conf/conformer.yaml | spec_aug | aishell1 | attention_rescoring | - | 0.047904 |

@ -1 +1,69 @@
decode_modes="attention_rescoring ctc_greedy_search" #!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
chunk_mode=true
fi
# download language model
#bash local/download_lm_ch.sh
#if [ $? -ne 0 ]; then
# exit 1
#fi
for type in attention ctc_greedy_search; do
echo "decoding ${type}"
if [ ${chunk_mode} == true ];then
# stream decoding only support batchsize=1
batch_size=1
else
batch_size=64
fi
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test.py \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
done
for type in ctc_prefix_beam_search attention_rescoring; do
echo "decoding ${type}"
batch_size=1
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test.py \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
done
exit 0

@ -92,7 +92,9 @@ class TextFeaturizer():
tokens = self.tokenize(text) tokens = self.tokenize(text)
ids = [] ids = []
for token in tokens: for token in tokens:
token = token if token in self.vocab_dict else self.unk if token not in self.vocab_dict:
logger.debug(f"Text Token: {token} -> {self.unk}")
token = self.unk
ids.append(self.vocab_dict[token]) ids.append(self.vocab_dict[token])
return ids return ids

@ -860,7 +860,7 @@ class U2Model(U2DecodeModel):
int, nn.Layer, nn.Layer, nn.Layer: vocab size, encoder, decoder, ctc int, nn.Layer, nn.Layer, nn.Layer: vocab size, encoder, decoder, ctc
""" """
# cmvn # cmvn
if configs['cmvn_file'] is not None: if 'cmvn_file' in configs and configs['cmvn_file']:
mean, istd = load_cmvn(configs['cmvn_file'], mean, istd = load_cmvn(configs['cmvn_file'],
configs['cmvn_file_type']) configs['cmvn_file_type'])
global_cmvn = GlobalCMVN( global_cmvn = GlobalCMVN(

Loading…
Cancel
Save