|
|
@ -1,8 +1,17 @@
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
A simplifed version of Baidu DeepSpeech2 model.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#TODO: add bidirectional rnn.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
|
|
|
|
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
|
|
|
|
padding, act):
|
|
|
|
padding, act):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Convolution layer with batch normalization.
|
|
|
|
|
|
|
|
"""
|
|
|
|
conv_layer = paddle.layer.img_conv(
|
|
|
|
conv_layer = paddle.layer.img_conv(
|
|
|
|
input=input,
|
|
|
|
input=input,
|
|
|
|
filter_size=filter_size,
|
|
|
|
filter_size=filter_size,
|
|
|
@ -16,6 +25,15 @@ def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bidirectonal_simple_rnn_bn_layer(name, input, size, act):
|
|
|
|
def bidirectonal_simple_rnn_bn_layer(name, input, size, act):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Bidirectonal simple rnn layer with batch normalization.
|
|
|
|
|
|
|
|
The batch normalization is only performed on input-state projection
|
|
|
|
|
|
|
|
(sequence-wise normalization).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Question: does mean and variance statistics computed over the whole sequence
|
|
|
|
|
|
|
|
or just on each individual time steps?
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __simple_rnn_step__(input):
|
|
|
|
def __simple_rnn_step__(input):
|
|
|
|
last_state = paddle.layer.memory(name=name + "_state", size=size)
|
|
|
|
last_state = paddle.layer.memory(name=name + "_state", size=size)
|
|
|
|
input_fc = paddle.layer.fc(
|
|
|
|
input_fc = paddle.layer.fc(
|
|
|
@ -23,6 +41,7 @@ def bidirectonal_simple_rnn_bn_layer(name, input, size, act):
|
|
|
|
size=size,
|
|
|
|
size=size,
|
|
|
|
act=paddle.activation.Linear(),
|
|
|
|
act=paddle.activation.Linear(),
|
|
|
|
bias_attr=False)
|
|
|
|
bias_attr=False)
|
|
|
|
|
|
|
|
# batch norm is only performed on input-state projection
|
|
|
|
input_fc_bn = paddle.layer.batch_norm(
|
|
|
|
input_fc_bn = paddle.layer.batch_norm(
|
|
|
|
input=input_fc, act=paddle.activation.Linear())
|
|
|
|
input=input_fc, act=paddle.activation.Linear())
|
|
|
|
state_fc = paddle.layer.fc(
|
|
|
|
state_fc = paddle.layer.fc(
|
|
|
@ -47,6 +66,9 @@ def bidirectonal_simple_rnn_bn_layer(name, input, size, act):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv_group(input, num_stacks):
|
|
|
|
def conv_group(input, num_stacks):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Convolution group with several stacking convolution layers.
|
|
|
|
|
|
|
|
"""
|
|
|
|
conv = conv_bn_layer(
|
|
|
|
conv = conv_bn_layer(
|
|
|
|
input=input,
|
|
|
|
input=input,
|
|
|
|
filter_size=(11, 41),
|
|
|
|
filter_size=(11, 41),
|
|
|
@ -68,6 +90,9 @@ def conv_group(input, num_stacks):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rnn_group(input, size, num_stacks):
|
|
|
|
def rnn_group(input, size, num_stacks):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
RNN group with several stacking RNN layers.
|
|
|
|
|
|
|
|
"""
|
|
|
|
output = input
|
|
|
|
output = input
|
|
|
|
for i in xrange(num_stacks):
|
|
|
|
for i in xrange(num_stacks):
|
|
|
|
output = bidirectonal_simple_rnn_bn_layer(
|
|
|
|
output = bidirectonal_simple_rnn_bn_layer(
|
|
|
@ -81,7 +106,27 @@ def deep_speech2(audio_data,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=256):
|
|
|
|
rnn_size=256):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
The whole DeepSpeech2 model structure (a simplified version).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:param audio_data: Audio spectrogram data layer.
|
|
|
|
|
|
|
|
:type audio_data: LayerOutput
|
|
|
|
|
|
|
|
:param text_data: Transcription text data layer.
|
|
|
|
|
|
|
|
:type text_data: LayerOutput
|
|
|
|
|
|
|
|
:param dict_size: Dictionary size for tokenized transcription.
|
|
|
|
|
|
|
|
:type dict_size: int
|
|
|
|
|
|
|
|
:param num_conv_layers: Number of stacking convolution layers.
|
|
|
|
|
|
|
|
:type num_conv_layers: int
|
|
|
|
|
|
|
|
:param num_rnn_layers: Number of stacking RNN layers.
|
|
|
|
|
|
|
|
:type num_rnn_layers: int
|
|
|
|
|
|
|
|
:param rnn_size: RNN layer size (number of RNN cells).
|
|
|
|
|
|
|
|
:type rnn_size: int
|
|
|
|
|
|
|
|
:return: Tuple of the cost layer and the max_id decoder layer.
|
|
|
|
|
|
|
|
:rtype: tuple of LayerOutput
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# convolution group
|
|
|
|
conv_group_output = conv_group(input=audio_data, num_stacks=num_conv_layers)
|
|
|
|
conv_group_output = conv_group(input=audio_data, num_stacks=num_conv_layers)
|
|
|
|
|
|
|
|
# convert data form convolution feature map to sequence of vectors
|
|
|
|
conv2seq = paddle.layer.block_expand(
|
|
|
|
conv2seq = paddle.layer.block_expand(
|
|
|
|
input=conv_group_output,
|
|
|
|
input=conv_group_output,
|
|
|
|
num_channels=32,
|
|
|
|
num_channels=32,
|
|
|
@ -89,18 +134,22 @@ def deep_speech2(audio_data,
|
|
|
|
stride_y=1,
|
|
|
|
stride_y=1,
|
|
|
|
block_x=1,
|
|
|
|
block_x=1,
|
|
|
|
block_y=21)
|
|
|
|
block_y=21)
|
|
|
|
|
|
|
|
# rnn group
|
|
|
|
rnn_group_output = rnn_group(
|
|
|
|
rnn_group_output = rnn_group(
|
|
|
|
input=conv2seq, size=rnn_size, num_stacks=num_rnn_layers)
|
|
|
|
input=conv2seq, size=rnn_size, num_stacks=num_rnn_layers)
|
|
|
|
|
|
|
|
# output token distribution
|
|
|
|
fc = paddle.layer.fc(
|
|
|
|
fc = paddle.layer.fc(
|
|
|
|
input=rnn_group_output,
|
|
|
|
input=rnn_group_output,
|
|
|
|
size=dict_size + 1,
|
|
|
|
size=dict_size + 1,
|
|
|
|
act=paddle.activation.Linear(),
|
|
|
|
act=paddle.activation.Linear(),
|
|
|
|
bias_attr=True)
|
|
|
|
bias_attr=True)
|
|
|
|
|
|
|
|
# ctc cost
|
|
|
|
cost = paddle.layer.warp_ctc(
|
|
|
|
cost = paddle.layer.warp_ctc(
|
|
|
|
input=fc,
|
|
|
|
input=fc,
|
|
|
|
label=text_data,
|
|
|
|
label=text_data,
|
|
|
|
size=dict_size + 1,
|
|
|
|
size=dict_size + 1,
|
|
|
|
blank=dict_size,
|
|
|
|
blank=dict_size,
|
|
|
|
norm_by_times=True)
|
|
|
|
norm_by_times=True)
|
|
|
|
|
|
|
|
# max decoder
|
|
|
|
max_id = paddle.layer.max_id(input=fc)
|
|
|
|
max_id = paddle.layer.max_id(input=fc)
|
|
|
|
return cost, max_id
|
|
|
|
return cost, max_id
|
|
|
|