Merge branch 'PaddlePaddle:develop' into hongliang1014

pull/2531/head
David An (An Hongliang) 2 years ago committed by GitHub
commit 0476e645aa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -179,7 +179,7 @@ Via the easy-to-use, efficient, flexible and scalable implementation, our vision
- Scan the QR code below with your Wechat, you can access to official technical exchange group and get the bonus ( more than 20GB learning materials, such as papers, codes and videos ) and the live link of the lessons. Look forward to your participation. - Scan the QR code below with your Wechat, you can access to official technical exchange group and get the bonus ( more than 20GB learning materials, such as papers, codes and videos ) and the live link of the lessons. Look forward to your participation.
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/23690325/169763015-cbd8e28d-602c-4723-810d-dbc6da49441e.jpg" width = "200" /> <img src="https://user-images.githubusercontent.com/30135920/196351517-19dece6b-d6ea-448e-a341-d6bfe5712ec1.jpg" width = "200" />
</div> </div>
## Installation ## Installation

@ -162,22 +162,7 @@
- 🧩 级联模型应用: 作为传统语音任务的扩展,我们结合了自然语言处理、计算机视觉等任务,实现更接近实际需求的产业级应用。 - 🧩 级联模型应用: 作为传统语音任务的扩展,我们结合了自然语言处理、计算机视觉等任务,实现更接近实际需求的产业级应用。
### 近期活动
❗️重磅❗️飞桨智慧金融行业系列直播课
✅ 覆盖智能风控、智能运维、智能营销、智能客服四大金融主流场景
📆 9月6日-9月29日每周二、四19:00
+ 智慧金融行业深入洞察
+ 8节理论+实践精品直播课
+ 10+真实产业场景范例教学及实践
+ 更有免费算力+结业证书等礼品等你来拿
扫码报名码住直播链接,与行业精英深度交流
<div align="center">
<img src="https://user-images.githubusercontent.com/30135920/188431897-a02f028f-dd13-41e8-8ff6-749468cdc850.jpg" width = "200" />
</div>
### 近期更新 ### 近期更新
- 👑 2022.10.11: 新增 [Wav2vec2ASR](./examples/librispeech/asr3), 在 LibriSpeech 上针对ASR任务对wav2vec2.0 的fine-tuning. - 👑 2022.10.11: 新增 [Wav2vec2ASR](./examples/librispeech/asr3), 在 LibriSpeech 上针对ASR任务对wav2vec2.0 的fine-tuning.
- 🔥 2022.09.26: 新增 Voice Cloning, TTS finetune 和 ERNIE-SAT 到 [PaddleSpeech 网页应用](./demos/speech_web)。 - 🔥 2022.09.26: 新增 Voice Cloning, TTS finetune 和 ERNIE-SAT 到 [PaddleSpeech 网页应用](./demos/speech_web)。
@ -200,13 +185,13 @@
### 🔥 加入技术交流群获取入群福利 ### 🔥 加入技术交流群获取入群福利
- 3 日直播课链接: 深度解读 PP-TTS、PP-ASR、PP-VPR 三项核心语音系统关键技术 - 3 日直播课链接: 深度解读 【一句话语音合成】【小样本语音合成】【定制化语音识别】语音交互技术
- 20G 学习大礼包:视频课程、前沿论文与学习资料 - 20G 学习大礼包:视频课程、前沿论文与学习资料
微信扫描二维码关注公众号,点击“马上报名”填写问卷加入官方交流群,获得更高效的问题答疑,与各行各业开发者充分交流,期待您的加入。 微信扫描二维码关注公众号,点击“马上报名”填写问卷加入官方交流群,获得更高效的问题答疑,与各行各业开发者充分交流,期待您的加入。
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/23690325/169763015-cbd8e28d-602c-4723-810d-dbc6da49441e.jpg" width = "200" /> <img src="https://user-images.githubusercontent.com/30135920/196351517-19dece6b-d6ea-448e-a341-d6bfe5712ec1.jpg" width = "200" />
</div> </div>
<a name="安装"></a> <a name="安装"></a>

@ -9,7 +9,7 @@ Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER |
[Ds2 Online Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_0.2.1.model.tar.gz) | Aishell Dataset | Char-based | 491 MB | 2 Conv + 5 LSTM layers | 0.0666 |-| 151 h | [D2 Online Aishell ASR0](../../examples/aishell/asr0) | onnx/inference/python | [Ds2 Online Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_0.2.1.model.tar.gz) | Aishell Dataset | Char-based | 491 MB | 2 Conv + 5 LSTM layers | 0.0666 |-| 151 h | [D2 Online Aishell ASR0](../../examples/aishell/asr0) | onnx/inference/python |
[Ds2 Offline Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_offline_aishell_ckpt_1.0.1.model.tar.gz)| Aishell Dataset | Char-based | 1.4 GB | 2 Conv + 5 bidirectional LSTM layers| 0.0554 |-| 151 h | [Ds2 Offline Aishell ASR0](../../examples/aishell/asr0) | inference/python | [Ds2 Offline Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_offline_aishell_ckpt_1.0.1.model.tar.gz)| Aishell Dataset | Char-based | 1.4 GB | 2 Conv + 5 bidirectional LSTM layers| 0.0554 |-| 151 h | [Ds2 Offline Aishell ASR0](../../examples/aishell/asr0) | inference/python |
[Conformer Online Wenetspeech ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_wenetspeech_ckpt_1.0.0a.model.tar.gz) | WenetSpeech Dataset | Char-based | 457 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring| 0.11 (test\_net) 0.1879 (test\_meeting) |-| 10000 h |- | python | [Conformer Online Wenetspeech ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_wenetspeech_ckpt_1.0.0a.model.tar.gz) | WenetSpeech Dataset | Char-based | 457 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring| 0.11 (test\_net) 0.1879 (test\_meeting) |-| 10000 h |- | python |
[Conformer U2PP Online Wenetspeech ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_u2pp_wenetspeech_ckpt_1.1.4.model.tar.gz) | WenetSpeech Dataset | Char-based | 476 MB | Encoder:Conformer, Decoder:BiTransformer, Decoding method: Attention rescoring| 0.047198 (aishell test\_-1) 0.059212 (aishell test\_16) |-| 10000 h |- | python | [Conformer U2PP Online Wenetspeech ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_u2pp_wenetspeech_ckpt_1.3.0.model.tar.gz) | WenetSpeech Dataset | Char-based | 476 MB | Encoder:Conformer, Decoder:BiTransformer, Decoding method: Attention rescoring| 0.047198 (aishell test\_-1) 0.059212 (aishell test\_16) |-| 10000 h |- | python |
[Conformer Online Aishell ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_chunk_conformer_aishell_ckpt_0.2.0.model.tar.gz) | Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring| 0.0544 |-| 151 h | [Conformer Online Aishell ASR1](../../examples/aishell/asr1) | python | [Conformer Online Aishell ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_chunk_conformer_aishell_ckpt_0.2.0.model.tar.gz) | Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring| 0.0544 |-| 151 h | [Conformer Online Aishell ASR1](../../examples/aishell/asr1) | python |
[Conformer Offline Aishell ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_conformer_aishell_ckpt_1.0.1.model.tar.gz) | Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0460 |-| 151 h | [Conformer Offline Aishell ASR1](../../examples/aishell/asr1) | python | [Conformer Offline Aishell ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_conformer_aishell_ckpt_1.0.1.model.tar.gz) | Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0460 |-| 151 h | [Conformer Offline Aishell ASR1](../../examples/aishell/asr1) | python |
[Transformer Aishell ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_transformer_aishell_ckpt_0.1.1.model.tar.gz) | Aishell Dataset | Char-based | 128 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0523 || 151 h | [Transformer Aishell ASR1](../../examples/aishell/asr1) | python | [Transformer Aishell ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_transformer_aishell_ckpt_0.1.1.model.tar.gz) | Aishell Dataset | Char-based | 128 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0523 || 151 h | [Transformer Aishell ASR1](../../examples/aishell/asr1) | python |

@ -52,7 +52,7 @@ class ASRExecutor(BaseExecutor):
self.parser.add_argument( self.parser.add_argument(
'--model', '--model',
type=str, type=str,
default='conformer_u2pp_wenetspeech', default='conformer_u2pp_online_wenetspeech',
choices=[ choices=[
tag[:tag.index('-')] tag[:tag.index('-')]
for tag in self.task_resource.pretrained_models.keys() for tag in self.task_resource.pretrained_models.keys()
@ -470,7 +470,7 @@ class ASRExecutor(BaseExecutor):
@stats_wrapper @stats_wrapper
def __call__(self, def __call__(self,
audio_file: os.PathLike, audio_file: os.PathLike,
model: str='conformer_u2pp_wenetspeech', model: str='conformer_u2pp_online_wenetspeech',
lang: str='zh', lang: str='zh',
sample_rate: int=16000, sample_rate: int=16000,
config: os.PathLike=None, config: os.PathLike=None,

@ -25,7 +25,6 @@ model_alias = {
"deepspeech2online": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"], "deepspeech2online": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"],
"conformer": ["paddlespeech.s2t.models.u2:U2Model"], "conformer": ["paddlespeech.s2t.models.u2:U2Model"],
"conformer_online": ["paddlespeech.s2t.models.u2:U2Model"], "conformer_online": ["paddlespeech.s2t.models.u2:U2Model"],
"conformer_u2pp": ["paddlespeech.s2t.models.u2:U2Model"],
"conformer_u2pp_online": ["paddlespeech.s2t.models.u2:U2Model"], "conformer_u2pp_online": ["paddlespeech.s2t.models.u2:U2Model"],
"transformer": ["paddlespeech.s2t.models.u2:U2Model"], "transformer": ["paddlespeech.s2t.models.u2:U2Model"],
"wenetspeech": ["paddlespeech.s2t.models.u2:U2Model"], "wenetspeech": ["paddlespeech.s2t.models.u2:U2Model"],

@ -68,32 +68,12 @@ asr_dynamic_pretrained_models = {
'', '',
}, },
}, },
"conformer_u2pp_wenetspeech-zh-16k": {
'1.1': {
'url':
'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_u2pp_wenetspeech_ckpt_1.1.3.model.tar.gz',
'md5':
'662b347e1d2131b7a4dc5398365e2134',
'cfg_path':
'model.yaml',
'ckpt_path':
'exp/chunk_conformer_u2pp/checkpoints/avg_10',
'model':
'exp/chunk_conformer_u2pp/checkpoints/avg_10.pdparams',
'params':
'exp/chunk_conformer_u2pp/checkpoints/avg_10.pdparams',
'lm_url':
'',
'lm_md5':
'',
},
},
"conformer_u2pp_online_wenetspeech-zh-16k": { "conformer_u2pp_online_wenetspeech-zh-16k": {
'1.1': { '1.3': {
'url': 'url':
'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_u2pp_wenetspeech_ckpt_1.1.4.model.tar.gz', 'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_u2pp_wenetspeech_ckpt_1.3.0.model.tar.gz',
'md5': 'md5':
'3100fc1eac5779486cab859366992d0b', '62d230c1bf27731192aa9d3b8deca300',
'cfg_path': 'cfg_path':
'model.yaml', 'model.yaml',
'ckpt_path': 'ckpt_path':

@ -19,7 +19,6 @@ from typing import Tuple
import paddle import paddle
from paddle import nn from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I from paddle.nn import initializer as I
from paddlespeech.s2t.modules.align import Linear from paddlespeech.s2t.modules.align import Linear
@ -56,16 +55,6 @@ class MultiHeadedAttention(nn.Layer):
self.linear_out = Linear(n_feat, n_feat) self.linear_out = Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate) self.dropout = nn.Dropout(p=dropout_rate)
def _build_once(self, *args, **kwargs):
super()._build_once(*args, **kwargs)
# if self.self_att:
# self.linear_kv = Linear(self.n_feat, self.n_feat*2)
if not self.training:
self.weight = paddle.concat(
[self.linear_k.weight, self.linear_v.weight], axis=-1)
self.bias = paddle.concat([self.linear_k.bias, self.linear_v.bias])
self._built = True
def forward_qkv(self, def forward_qkv(self,
query: paddle.Tensor, query: paddle.Tensor,
key: paddle.Tensor, key: paddle.Tensor,
@ -87,13 +76,8 @@ class MultiHeadedAttention(nn.Layer):
n_batch = query.shape[0] n_batch = query.shape[0]
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
if self.training: k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
else:
k, v = F.linear(key, self.weight, self.bias).view(
n_batch, -1, 2 * self.h, self.d_k).split(
2, axis=2)
q = q.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k) q = q.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k)
k = k.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k) k = k.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)

Loading…
Cancel
Save