parent
97ec01260b
commit
016ed6d69c
@ -0,0 +1,28 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from sklearn.metrics import roc_curve
|
||||
|
||||
|
||||
def compute_eer(labels: np.ndarray, scores: np.ndarray) -> List[float]:
|
||||
'''
|
||||
Compute EER and return score threshold.
|
||||
'''
|
||||
fpr, tpr, threshold = roc_curve(y_true=labels, y_score=scores)
|
||||
fnr = 1 - tpr
|
||||
eer_threshold = threshold[np.nanargmin(np.absolute((fnr - fpr)))]
|
||||
eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
|
||||
return eer, eer_threshold
|
@ -0,0 +1,72 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
|
||||
from paddle.framework import load as load_state_dict
|
||||
from paddle.utils import download
|
||||
|
||||
__all__ = [
|
||||
'decompress',
|
||||
'download_and_decompress',
|
||||
'load_state_dict_from_url',
|
||||
]
|
||||
|
||||
|
||||
def decompress(file: str, path: str=os.PathLike):
|
||||
"""
|
||||
Extracts all files from a compressed file to specific path.
|
||||
"""
|
||||
assert os.path.isfile(file), "File: {} not exists.".format(file)
|
||||
|
||||
if path is None:
|
||||
print("decompress the data: {}".format(file))
|
||||
download._decompress(file)
|
||||
else:
|
||||
print("decompress the data: {} to {}".format(file, path))
|
||||
if not os.path.isdir(path):
|
||||
os.makedirs(path)
|
||||
|
||||
tmp_file = os.path.join(path, os.path.basename(file))
|
||||
os.rename(file, tmp_file)
|
||||
download._decompress(tmp_file)
|
||||
os.rename(tmp_file, file)
|
||||
|
||||
|
||||
def download_and_decompress(archives: List[Dict[str, str]],
|
||||
path: str,
|
||||
decompress: bool=True):
|
||||
"""
|
||||
Download archieves and decompress to specific path.
|
||||
"""
|
||||
if not os.path.isdir(path):
|
||||
os.makedirs(path)
|
||||
|
||||
for archive in archives:
|
||||
assert 'url' in archive and 'md5' in archive, \
|
||||
'Dictionary keys of "url" and "md5" are required in the archive, but got: {list(archieve.keys())}'
|
||||
download.get_path_from_url(
|
||||
archive['url'], path, archive['md5'], decompress=decompress)
|
||||
|
||||
|
||||
def load_state_dict_from_url(url: str, path: str, md5: str=None):
|
||||
"""
|
||||
Download and load a state dict from url
|
||||
"""
|
||||
if not os.path.isdir(path):
|
||||
os.makedirs(path)
|
||||
|
||||
download.get_path_from_url(url, path, md5)
|
||||
return load_state_dict(os.path.join(path, os.path.basename(url)))
|
Loading…
Reference in new issue