|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Layer normalization module."""
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(paddle.nn.LayerNorm):
|
|
|
|
"""Layer normalization module.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
nout : int
|
|
|
|
Output dim size.
|
|
|
|
dim : int
|
|
|
|
Dimension to be normalized.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, nout, dim=-1):
|
|
|
|
"""Construct an LayerNorm object."""
|
|
|
|
super(LayerNorm, self).__init__(nout)
|
|
|
|
self.dim = dim
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Apply layer normalization.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : paddle.Tensor
|
|
|
|
Input tensor.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
paddle.Tensor
|
|
|
|
Normalized tensor.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.dim == -1:
|
|
|
|
return super(LayerNorm, self).forward(x)
|
|
|
|
else:
|
|
|
|
len_dim = len(x.shape)
|
|
|
|
if self.dim < 0:
|
|
|
|
self.dim = len_dim + self.dim
|
|
|
|
assert self.dim >= 0
|
|
|
|
|
|
|
|
orig_perm = list(range(len_dim))
|
|
|
|
new_perm = orig_perm[:]
|
|
|
|
temp = new_perm[self.dim]
|
|
|
|
new_perm[self.dim] = new_perm[len_dim - 1]
|
|
|
|
new_perm[len_dim - 1] = temp
|
|
|
|
# new_perm[self.dim], new_perm[len_dim -1] = new_perm[len_dim -1], new_perm[self.dim]
|
|
|
|
|
|
|
|
return paddle.transpose(
|
|
|
|
super(LayerNorm, self).forward(paddle.transpose(x, new_perm)),
|
|
|
|
new_perm)
|