# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Layer normalization module.""" import paddle class LayerNorm(paddle.nn.LayerNorm): """Layer normalization module. Parameters ---------- nout : int Output dim size. dim : int Dimension to be normalized. """ def __init__(self, nout, dim=-1): """Construct an LayerNorm object.""" super(LayerNorm, self).__init__(nout) self.dim = dim def forward(self, x): """Apply layer normalization. Parameters ---------- x : paddle.Tensor Input tensor. Returns ---------- paddle.Tensor Normalized tensor. """ if self.dim == -1: return super(LayerNorm, self).forward(x) else: len_dim = len(x.shape) if self.dim < 0: self.dim = len_dim + self.dim assert self.dim >= 0 orig_perm = list(range(len_dim)) new_perm = orig_perm[:] temp = new_perm[self.dim] new_perm[self.dim] = new_perm[len_dim - 1] new_perm[len_dim - 1] = temp # new_perm[self.dim], new_perm[len_dim -1] = new_perm[len_dim -1], new_perm[self.dim] return paddle.transpose( super(LayerNorm, self).forward(paddle.transpose(x, new_perm)), new_perm)