You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/modules/align.py

75 lines
3.7 KiB

import paddle
from paddle import nn
from paddlespeech.s2t.modules.initializer import KaimingUniform
"""
To align the initializer between paddle and torch,
the API below are set defalut initializer with priority higger than global initializer.
"""
global_init_type = None
class LayerNorm(nn.LayerNorm):
def __init__(self, normalized_shape, epsilon=1e-05, weight_attr=None, bias_attr=None, name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0))
if bias_attr is None:
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0))
super(LayerNorm, self).__init__(normalized_shape, epsilon, weight_attr, bias_attr, name)
class BatchNorm1D(nn.BatchNorm1D):
def __init__(self, num_features, momentum=0.9, epsilon=1e-05, weight_attr=None, bias_attr=None, data_format='NCL', name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0))
if bias_attr is None:
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0))
super(BatchNorm1D, self).__init__(num_features, momentum, epsilon, weight_attr, bias_attr, data_format, name)
class Embedding(nn.Embedding):
def __init__(self, num_embeddings, embedding_dim, padding_idx=None, sparse=False, weight_attr=None, name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Normal())
super(Embedding, self).__init__(num_embeddings, embedding_dim, padding_idx, sparse, weight_attr, name)
class Linear(nn.Linear):
def __init__(self, in_features, out_features, weight_attr=None, bias_attr=None, name=None):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(
initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(
initializer=KaimingUniform())
super(Linear, self).__init__(in_features, out_features, weight_attr, bias_attr, name)
class Conv1D(nn.Conv1D):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format='NCL'):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
print("set kaiming_uniform")
weight_attr = paddle.ParamAttr(
initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(
initializer=KaimingUniform())
super(Conv1D, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format)
class Conv2D(nn.Conv2D):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format='NCHW'):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(
initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(
initializer=KaimingUniform())
super(Conv2D, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format)