|
|
|
"""Trainer for DeepSpeech2 model."""
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import os
|
|
|
|
import argparse
|
|
|
|
import gzip
|
|
|
|
import time
|
|
|
|
import distutils.util
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
from model import deep_speech2
|
|
|
|
from data_utils.data import DataGenerator
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
|
|
parser.add_argument(
|
|
|
|
"--batch_size", default=32, type=int, help="Minibatch size.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--num_passes",
|
|
|
|
default=20,
|
|
|
|
type=int,
|
|
|
|
help="Training pass number. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--num_conv_layers",
|
|
|
|
default=2,
|
|
|
|
type=int,
|
|
|
|
help="Convolution layer number. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--num_rnn_layers",
|
|
|
|
default=3,
|
|
|
|
type=int,
|
|
|
|
help="RNN layer number. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--rnn_layer_size",
|
|
|
|
default=512,
|
|
|
|
type=int,
|
|
|
|
help="RNN layer cell number. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--adam_learning_rate",
|
|
|
|
default=5e-4,
|
|
|
|
type=float,
|
|
|
|
help="Learning rate for ADAM Optimizer. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--use_gpu",
|
|
|
|
default=True,
|
|
|
|
type=distutils.util.strtobool,
|
|
|
|
help="Use gpu or not. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--use_sortagrad",
|
|
|
|
default=True,
|
|
|
|
type=distutils.util.strtobool,
|
|
|
|
help="Use sortagrad or not. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--trainer_count",
|
|
|
|
default=4,
|
|
|
|
type=int,
|
|
|
|
help="Trainer number. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--mean_std_filepath",
|
|
|
|
default='mean_std.npz',
|
|
|
|
type=str,
|
|
|
|
help="Manifest path for normalizer. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--train_manifest_path",
|
|
|
|
default='datasets/manifest.train',
|
|
|
|
type=str,
|
|
|
|
help="Manifest path for training. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--dev_manifest_path",
|
|
|
|
default='datasets/manifest.dev',
|
|
|
|
type=str,
|
|
|
|
help="Manifest path for validation. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--vocab_filepath",
|
|
|
|
default='datasets/vocab/eng_vocab.txt',
|
|
|
|
type=str,
|
|
|
|
help="Vocabulary filepath. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--init_model_path",
|
|
|
|
default=None,
|
|
|
|
type=str,
|
|
|
|
help="If set None, the training will start from scratch. "
|
|
|
|
"Otherwise, the training will resume from "
|
|
|
|
"the existing model of this path. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--augmentation_config",
|
|
|
|
default='{}',
|
|
|
|
type=str,
|
|
|
|
help="Augmentation configuration in json-format. "
|
|
|
|
"(default: %(default)s)")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
"""
|
|
|
|
DeepSpeech2 training.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# initialize data generator
|
|
|
|
def data_generator():
|
|
|
|
return DataGenerator(
|
|
|
|
vocab_filepath=args.vocab_filepath,
|
|
|
|
mean_std_filepath=args.mean_std_filepath,
|
|
|
|
augmentation_config=args.augmentation_config)
|
|
|
|
|
|
|
|
train_generator = data_generator()
|
|
|
|
test_generator = data_generator()
|
|
|
|
|
|
|
|
# create network config
|
|
|
|
# paddle.data_type.dense_array is used for variable batch input.
|
|
|
|
# The size 161 * 161 is only an placeholder value and the real shape
|
|
|
|
# of input batch data will be induced during training.
|
|
|
|
audio_data = paddle.layer.data(
|
|
|
|
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
|
|
|
|
text_data = paddle.layer.data(
|
|
|
|
name="transcript_text",
|
|
|
|
type=paddle.data_type.integer_value_sequence(
|
|
|
|
train_generator.vocab_size))
|
|
|
|
cost = deep_speech2(
|
|
|
|
audio_data=audio_data,
|
|
|
|
text_data=text_data,
|
|
|
|
dict_size=train_generator.vocab_size,
|
|
|
|
num_conv_layers=args.num_conv_layers,
|
|
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
|
|
rnn_size=args.rnn_layer_size,
|
|
|
|
is_inference=False)
|
|
|
|
|
|
|
|
# create/load parameters and optimizer
|
|
|
|
if args.init_model_path is None:
|
|
|
|
parameters = paddle.parameters.create(cost)
|
|
|
|
else:
|
|
|
|
if not os.path.isfile(args.init_model_path):
|
|
|
|
raise IOError("Invalid model!")
|
|
|
|
parameters = paddle.parameters.Parameters.from_tar(
|
|
|
|
gzip.open(args.init_model_path))
|
|
|
|
optimizer = paddle.optimizer.Adam(
|
|
|
|
learning_rate=args.adam_learning_rate, gradient_clipping_threshold=400)
|
|
|
|
trainer = paddle.trainer.SGD(
|
|
|
|
cost=cost, parameters=parameters, update_equation=optimizer)
|
|
|
|
|
|
|
|
# prepare data reader
|
|
|
|
train_batch_reader = train_generator.batch_reader_creator(
|
|
|
|
manifest_path=args.train_manifest_path,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
sortagrad=args.use_sortagrad if args.init_model_path is None else False,
|
|
|
|
batch_shuffle=True)
|
|
|
|
test_batch_reader = test_generator.batch_reader_creator(
|
|
|
|
manifest_path=args.dev_manifest_path,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
sortagrad=False,
|
|
|
|
batch_shuffle=False)
|
|
|
|
|
|
|
|
# create event handler
|
|
|
|
def event_handler(event):
|
|
|
|
global start_time, cost_sum, cost_counter
|
|
|
|
if isinstance(event, paddle.event.EndIteration):
|
|
|
|
cost_sum += event.cost
|
|
|
|
cost_counter += 1
|
|
|
|
if event.batch_id % 50 == 0:
|
|
|
|
print("\nPass: %d, Batch: %d, TrainCost: %f" %
|
|
|
|
(event.pass_id, event.batch_id, cost_sum / cost_counter))
|
|
|
|
cost_sum, cost_counter = 0.0, 0
|
|
|
|
with gzip.open("params_tmp.tar.gz", 'w') as f:
|
|
|
|
parameters.to_tar(f)
|
|
|
|
else:
|
|
|
|
sys.stdout.write('.')
|
|
|
|
sys.stdout.flush()
|
|
|
|
if isinstance(event, paddle.event.BeginPass):
|
|
|
|
start_time = time.time()
|
|
|
|
cost_sum, cost_counter = 0.0, 0
|
|
|
|
if isinstance(event, paddle.event.EndPass):
|
|
|
|
result = trainer.test(
|
|
|
|
reader=test_batch_reader, feeding=test_generator.feeding)
|
|
|
|
print("\n------- Time: %d sec, Pass: %d, ValidationCost: %s" %
|
|
|
|
(time.time() - start_time, event.pass_id, result.cost))
|
|
|
|
|
|
|
|
# run train
|
|
|
|
trainer.train(
|
|
|
|
reader=train_batch_reader,
|
|
|
|
event_handler=event_handler,
|
|
|
|
num_passes=args.num_passes,
|
|
|
|
feeding=train_generator.feeding)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
|
|
|
|
train()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|