# Ngram LM
## Prepare Language Model
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
A language model is required to improve the decoder's performance. We have prepared two language models (with lossy compression) for users to download and try. One is for English and the other is for Mandarin. The bash script to download LM is example's `local/download_lm_*.sh` .
For example, users can simply run this to download the prepared mandarin language models:
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
```bash
cd examples/aishell
source path.sh
bash local/download_lm_ch.sh
```
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
If you wish to train your own better language model, please refer to [KenLM ](https://github.com/kpu/kenlm ) for tutorials.
Here we provide some tips to show how we prepare our English and Mandarin language models.
You can take it as a reference when you train your own.
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
### English LM
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
The English corpus is from the [Common Crawl Repository ](http://commoncrawl.org ) and you can download it from [statmt ](http://data.statmt.org/ngrams/deduped_en ). We use part en.00 to train our English language model. There are some preprocessing steps before training:
* Characters not in \['A-Za-z0-9\s'\] (\s represents whitespace characters) are removed and Arabic numbers are converted to English numbers like 1000 to one thousand.
* Repeated whitespace characters are squeezed to one and the beginning whitespace characters are removed. Notice that all transcriptions are lowercase, so all characters are converted to lowercase.
* Top 400,000 most frequent words are selected to build the vocabulary and the rest are replaced with 'UNKNOWNWORD'.
Now the preprocessing is done and we get a clean corpus to train the language model. Our released language model is trained with arguments '-o 5 --prune 0 1 1 1 1'. '-o 5' means the max order of the language model is 5. '--prune 0 1 1 1 1' represents count thresholds for each order and more specifically it will prune singletons for orders two and higher. To save disk storage we convert the ARPA file to 'trie' binary file with arguments '-a 22 -q 8 -b 8'. '-a' represents the maximum number of leading bits of pointers in 'trie' to chop. '-q -b' are quantization parameters for probability and backoff.
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
### Mandarin LM
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
Different from the English language model, the Mandarin language model is character-based where each token is a Chinese character. We use the internal corpus to train the released Mandarin language models. The corpus contains billions of tokens. The preprocessing has a tiny difference from the English language model and the main steps include:
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
* The beginning and trailing whitespace characters are removed.
* English punctuations and Chinese punctuations are removed.
* A whitespace character between two tokens is inserted.
Please notice that the released language models only contain Chinese simplified characters. After preprocessing is done we can begin to train the language model. The key training arguments for small LM are '-o 5 --prune 0 1 2 4 4' and '-o 5' for large LM. Please refer above section for the meaning of each argument. We also convert the ARPA file to a binary file using default settings.