Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import math
|
|
|
|
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
import numpy as np
|
|
|
|
from paddle import distributed as dist
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
from paddle.io import BatchSampler
|
|
|
|
from paddle.io import DistributedBatchSampler
|
|
|
|
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
from deepspeech.utils.log import Log
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
"SortagradDistributedBatchSampler",
|
|
|
|
"SortagradBatchSampler",
|
|
|
|
]
|
|
|
|
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
|
|
|
|
def _batch_shuffle(indices, batch_size, epoch, clipped=False):
|
|
|
|
"""Put similarly-sized instances into minibatches for better efficiency
|
|
|
|
and make a batch-wise shuffle.
|
|
|
|
|
|
|
|
1. Sort the audio clips by duration.
|
|
|
|
2. Generate a random number `k`, k in [0, batch_size).
|
|
|
|
3. Randomly shift `k` instances in order to create different batches
|
|
|
|
for different epochs. Create minibatches.
|
|
|
|
4. Shuffle the minibatches.
|
|
|
|
|
|
|
|
:param indices: indexes. List of int.
|
|
|
|
:type indices: list
|
|
|
|
:param batch_size: Batch size. This size is also used for generate
|
|
|
|
a random number for batch shuffle.
|
|
|
|
:type batch_size: int
|
|
|
|
:param clipped: Whether to clip the heading (small shift) and trailing
|
|
|
|
(incomplete batch) instances.
|
|
|
|
:type clipped: bool
|
|
|
|
:return: Batch shuffled mainifest.
|
|
|
|
:rtype: list
|
|
|
|
"""
|
|
|
|
rng = np.random.RandomState(epoch)
|
|
|
|
shift_len = rng.randint(0, batch_size - 1)
|
|
|
|
batch_indices = list(zip(*[iter(indices[shift_len:])] * batch_size))
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
rng.shuffle(batch_indices)
|
|
|
|
batch_indices = [item for batch in batch_indices for item in batch]
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
assert clipped is False
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
if not clipped:
|
|
|
|
res_len = len(indices) - shift_len - len(batch_indices)
|
|
|
|
# when res_len is 0, will return whole list, len(List[-0:]) = len(List[:])
|
|
|
|
if res_len != 0:
|
|
|
|
batch_indices.extend(indices[-res_len:])
|
|
|
|
batch_indices.extend(indices[0:shift_len])
|
|
|
|
assert len(indices) == len(
|
|
|
|
batch_indices
|
|
|
|
), f"_batch_shuffle: {len(indices)} : {len(batch_indices)} : {res_len} - {shift_len}"
|
|
|
|
return batch_indices
|
|
|
|
|
|
|
|
|
|
|
|
class SortagradDistributedBatchSampler(DistributedBatchSampler):
|
|
|
|
def __init__(self,
|
|
|
|
dataset,
|
|
|
|
batch_size,
|
|
|
|
num_replicas=None,
|
|
|
|
rank=None,
|
|
|
|
shuffle=False,
|
|
|
|
drop_last=False,
|
|
|
|
sortagrad=False,
|
|
|
|
shuffle_method="batch_shuffle"):
|
|
|
|
"""Sortagrad Sampler for multi gpus.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataset (paddle.io.Dataset):
|
|
|
|
batch_size (int): batch size for one gpu
|
|
|
|
num_replicas (int, optional): world size or numbers of gpus. Defaults to None.
|
|
|
|
rank (int, optional): rank id. Defaults to None.
|
|
|
|
shuffle (bool, optional): True for do shuffle, or else. Defaults to False.
|
|
|
|
drop_last (bool, optional): whether drop last batch which is less than batch size. Defaults to False.
|
|
|
|
sortagrad (bool, optional): True, do sortgrad in first epoch, then shuffle as usual; or else. Defaults to False.
|
|
|
|
shuffle_method (str, optional): shuffle method, "instance_shuffle" or "batch_shuffle". Defaults to "batch_shuffle".
|
|
|
|
"""
|
|
|
|
super().__init__(dataset, batch_size, num_replicas, rank, shuffle,
|
|
|
|
drop_last)
|
|
|
|
self._sortagrad = sortagrad
|
|
|
|
self._shuffle_method = shuffle_method
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
num_samples = len(self.dataset)
|
|
|
|
indices = np.arange(num_samples).tolist()
|
|
|
|
indices += indices[:(self.total_size - len(indices))]
|
|
|
|
assert len(indices) == self.total_size
|
|
|
|
|
|
|
|
# sort (by duration) or batch-wise shuffle the manifest
|
|
|
|
if self.shuffle:
|
|
|
|
if self.epoch == 0 and self._sortagrad:
|
|
|
|
logger.info(
|
|
|
|
f'rank: {dist.get_rank()} dataset sortagrad! epoch {self.epoch}'
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
logger.info(
|
|
|
|
f'rank: {dist.get_rank()} dataset shuffle! epoch {self.epoch}'
|
|
|
|
)
|
|
|
|
if self._shuffle_method == "batch_shuffle":
|
|
|
|
# using `batch_size * nrank`, or will cause instability loss and nan or inf grad,
|
|
|
|
# since diff batch examlpe length in batches case instability loss in diff rank,
|
|
|
|
# e.g. rank0 maxlength 20, rank3 maxlength 1000
|
|
|
|
indices = _batch_shuffle(
|
|
|
|
indices,
|
|
|
|
self.batch_size * self.nranks,
|
|
|
|
self.epoch,
|
|
|
|
clipped=False)
|
|
|
|
elif self._shuffle_method == "instance_shuffle":
|
|
|
|
np.random.RandomState(self.epoch).shuffle(indices)
|
|
|
|
else:
|
|
|
|
raise ValueError("Unknown shuffle method %s." %
|
|
|
|
self._shuffle_method)
|
|
|
|
assert len(
|
|
|
|
indices
|
|
|
|
) == self.total_size, f"batch shuffle examples error: {len(indices)} : {self.total_size}"
|
|
|
|
|
|
|
|
# slice `self.batch_size` examples by rank id
|
|
|
|
def _get_indices_by_batch_size(indices):
|
|
|
|
subsampled_indices = []
|
|
|
|
last_batch_size = self.total_size % (self.batch_size * self.nranks)
|
|
|
|
assert last_batch_size % self.nranks == 0
|
|
|
|
last_local_batch_size = last_batch_size // self.nranks
|
|
|
|
|
|
|
|
for i in range(self.local_rank * self.batch_size,
|
|
|
|
len(indices) - last_batch_size,
|
|
|
|
self.batch_size * self.nranks):
|
|
|
|
subsampled_indices.extend(indices[i:i + self.batch_size])
|
|
|
|
|
|
|
|
indices = indices[len(indices) - last_batch_size:]
|
|
|
|
subsampled_indices.extend(
|
|
|
|
indices[self.local_rank * last_local_batch_size:(
|
|
|
|
self.local_rank + 1) * last_local_batch_size])
|
|
|
|
return subsampled_indices
|
|
|
|
|
|
|
|
if self.nranks > 1:
|
|
|
|
indices = _get_indices_by_batch_size(indices)
|
|
|
|
|
|
|
|
assert len(indices) == self.num_samples
|
|
|
|
_sample_iter = iter(indices)
|
|
|
|
|
|
|
|
batch_indices = []
|
|
|
|
for idx in _sample_iter:
|
|
|
|
batch_indices.append(idx)
|
|
|
|
if len(batch_indices) == self.batch_size:
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
logger.debug(
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
f"rank: {dist.get_rank()} batch index: {batch_indices} ")
|
|
|
|
yield batch_indices
|
|
|
|
batch_indices = []
|
|
|
|
if not self.drop_last and len(batch_indices) > 0:
|
|
|
|
yield batch_indices
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
num_samples = self.num_samples
|
|
|
|
num_samples += int(not self.drop_last) * (self.batch_size - 1)
|
|
|
|
return num_samples // self.batch_size
|
|
|
|
|
|
|
|
|
|
|
|
class SortagradBatchSampler(BatchSampler):
|
|
|
|
def __init__(self,
|
|
|
|
dataset,
|
|
|
|
batch_size,
|
|
|
|
shuffle=False,
|
|
|
|
drop_last=False,
|
|
|
|
sortagrad=False,
|
|
|
|
shuffle_method="batch_shuffle"):
|
|
|
|
"""Sortagrad Sampler for one gpu.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataset (paddle.io.Dataset):
|
|
|
|
batch_size (int): batch size for one gpu
|
|
|
|
shuffle (bool, optional): True for do shuffle, or else. Defaults to False.
|
|
|
|
drop_last (bool, optional): whether drop last batch which is less than batch size. Defaults to False.
|
|
|
|
sortagrad (bool, optional): True, do sortgrad in first epoch, then shuffle as usual; or else. Defaults to False.
|
|
|
|
shuffle_method (str, optional): shuffle method, "instance_shuffle" or "batch_shuffle". Defaults to "batch_shuffle".
|
|
|
|
"""
|
|
|
|
self.dataset = dataset
|
|
|
|
|
|
|
|
assert isinstance(batch_size, int) and batch_size > 0, \
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
"batch_size should be a positive integer"
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
self.batch_size = batch_size
|
|
|
|
assert isinstance(shuffle, bool), \
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
"shuffle should be a boolean value"
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
self.shuffle = shuffle
|
|
|
|
assert isinstance(drop_last, bool), \
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
"drop_last should be a boolean number"
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
|
|
|
|
self.drop_last = drop_last
|
|
|
|
self.epoch = 0
|
|
|
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0))
|
|
|
|
self.total_size = self.num_samples
|
|
|
|
self._sortagrad = sortagrad
|
|
|
|
self._shuffle_method = shuffle_method
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
num_samples = len(self.dataset)
|
|
|
|
indices = np.arange(num_samples).tolist()
|
|
|
|
indices += indices[:(self.total_size - len(indices))]
|
|
|
|
assert len(indices) == self.total_size
|
|
|
|
|
|
|
|
# sort (by duration) or batch-wise shuffle the manifest
|
|
|
|
if self.shuffle:
|
|
|
|
if self.epoch == 0 and self._sortagrad:
|
|
|
|
logger.info(f'dataset sortagrad! epoch {self.epoch}')
|
|
|
|
else:
|
|
|
|
logger.info(f'dataset shuffle! epoch {self.epoch}')
|
|
|
|
if self._shuffle_method == "batch_shuffle":
|
|
|
|
indices = _batch_shuffle(
|
|
|
|
indices, self.batch_size, self.epoch, clipped=False)
|
|
|
|
elif self._shuffle_method == "instance_shuffle":
|
|
|
|
np.random.RandomState(self.epoch).shuffle(indices)
|
|
|
|
else:
|
|
|
|
raise ValueError("Unknown shuffle method %s." %
|
|
|
|
self._shuffle_method)
|
|
|
|
assert len(
|
|
|
|
indices
|
|
|
|
) == self.total_size, f"batch shuffle examples error: {len(indices)} : {self.total_size}"
|
|
|
|
|
|
|
|
assert len(indices) == self.num_samples
|
|
|
|
_sample_iter = iter(indices)
|
|
|
|
|
|
|
|
batch_indices = []
|
|
|
|
for idx in _sample_iter:
|
|
|
|
batch_indices.append(idx)
|
|
|
|
if len(batch_indices) == self.batch_size:
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
logger.debug(
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
f"rank: {dist.get_rank()} batch index: {batch_indices} ")
|
|
|
|
yield batch_indices
|
|
|
|
batch_indices = []
|
|
|
|
if not self.drop_last and len(batch_indices) > 0:
|
|
|
|
yield batch_indices
|
|
|
|
|
|
|
|
self.epoch += 1
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
num_samples = self.num_samples
|
|
|
|
num_samples += int(not self.drop_last) * (self.batch_size - 1)
|
|
|
|
return num_samples // self.batch_size
|