|
|
|
SHELL:= /bin/bash
|
|
|
|
PYTHON:= python3.7
|
|
|
|
|
|
|
|
CXX ?= g++
|
|
|
|
CC ?= gcc # used for sph2pipe
|
|
|
|
# CXX = clang++ # Uncomment these lines...
|
|
|
|
# CC = clang # ...to build with Clang.
|
|
|
|
|
|
|
|
WGET ?= wget --no-check-certificate
|
|
|
|
|
|
|
|
.PHONY: all clean
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
|
|
|
|
all: virtualenv kenlm.done sox.done soxbindings.done mfa.done sclite.done
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
|
|
|
|
virtualenv:
|
|
|
|
test -d venv || virtualenv -p $(PYTHON) venv
|
|
|
|
touch venv/bin/activate
|
|
|
|
|
|
|
|
clean:
|
|
|
|
rm -fr venv
|
|
|
|
find -iname "*.pyc" -delete
|
|
|
|
rm -rf kenlm
|
|
|
|
|
|
|
|
kenlm.done:
|
|
|
|
# Ubuntu 16.04 透過 apt 會安裝 boost 1.58.0
|
|
|
|
# it seems that boost (1.54.0) requires higher version. After I switched to g++-5 it compiles normally.
|
|
|
|
apt install -y build-essential cmake libboost-system-dev libboost-thread-dev libboost-program-options-dev libboost-test-dev libeigen3-dev zlib1g-dev libbz2-dev liblzma-dev
|
|
|
|
apt-get install -y gcc-5 g++-5 && update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50 && update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
|
|
|
|
test -d kenlm || wget -O - https://kheafield.com/code/kenlm.tar.gz --no-check-certificate | tar xz
|
|
|
|
rm -rf kenlm/build && mkdir -p kenlm/build && cd kenlm/build && cmake .. && make -j4 && make install
|
|
|
|
source venv/bin/activate; cd kenlm && python setup.py install
|
|
|
|
touch kenlm.done
|
|
|
|
|
|
|
|
sox.done:
|
|
|
|
apt install -y libvorbis-dev libmp3lame-dev libmad-ocaml-dev
|
|
|
|
test -d sox-14.4.2 || wget https://nchc.dl.sourceforge.net/project/sox/sox/14.4.2/sox-14.4.2.tar.gz --no-check-certificate
|
|
|
|
tar -xvzf sox-14.4.2.tar.gz -C .
|
|
|
|
cd sox-14.4.2 && ./configure --prefix=/usr/ && make -j4 && make install
|
|
|
|
touch sox.done
|
Support paddle 2.x (#538)
* 2.x model
* model test pass
* fix data
* fix soundfile with flac support
* one thread dataloader test pass
* export feasture size
add trainer and utils
add setup model and dataloader
update travis using Bionic dist
* add venv; test under venv
* fix unittest; train and valid
* add train and config
* add config and train script
* fix ctc cuda memcopy error
* fix imports
* fix train valid log
* fix dataset batch shuffle shift start from 1
fix rank_zero_only decreator error
close tensorboard when train over
add decoding config and code
* test process can run
* test with decoding
* test and infer with decoding
* fix infer
* fix ctc loss
lr schedule
sortagrad
logger
* aishell egs
* refactor train
add aishell egs
* fix dataset batch shuffle and add batch sampler log
print model parameter
* fix model and ctc
* sequence_mask make all inputs zeros, which cause grad be zero, this is a bug of LessThanOp
add grad clip by global norm
add model train test notebook
* ctc loss
remove run prefix
using ord value as text id
* using unk when training
compute_loss need text ids
ord id using in test mode, which compute wer/cer
* fix tester
* add lr_deacy
refactor code
* fix tools
* fix ci
add tune
fix gru model bugs
add dataset and model test
* fix decoding
* refactor repo
fix decoding
* fix musan and rir dataset
* refactor io, loss, conv, rnn, gradclip, model, utils
* fix ci and import
* refactor model
add export jit model
* add deploy bin and test it
* rm uselss egs
* add layer tools
* refactor socket server
new model from pretrain
* remve useless
* fix instability loss and grad nan or inf for librispeech training
* fix sampler
* fix libri train.sh
* fix doc
* add license on cpp
* fix doc
* fix libri script
* fix install
* clip 5 wer 7.39, clip 400 wer 7.54, 1.8 clip 400 baseline 7.49
4 years ago
|
|
|
|
|
|
|
soxbindings.done:
|
|
|
|
test -d soxbindings || git clone https://github.com/pseeth/soxbindings.git
|
|
|
|
source venv/bin/activate; cd soxbindings && python setup.py install
|
|
|
|
touch soxbindings.done
|
|
|
|
|
|
|
|
mfa.done:
|
|
|
|
test -d montreal-forced-aligner || wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz --no-check-certificate
|
|
|
|
tar xvf montreal-forced-aligner_linux.tar.gz
|
|
|
|
touch mfa.done
|
|
|
|
|
|
|
|
|
|
|
|
#== SCTK ===============================================================================
|
|
|
|
# SCTK official repo does not have version tags. Here's the mapping:
|
|
|
|
# # 2.4.9 = 659bc36; 2.4.10 = d914e1b; 2.4.11 = 20159b5.
|
|
|
|
SCTK_GITHASH = 20159b5
|
|
|
|
|
|
|
|
SCTK_CXFLAGS = -w -march=native
|
|
|
|
SCTK_MKENV = CFLAGS="$(CFLAGS) $(SCTK_CXFLAGS)" \
|
|
|
|
CXXFLAGS="$(CXXFLAGS) -std=c++11 $(SCTK_CXFLAGS)" \
|
|
|
|
|
|
|
|
|
|
|
|
# Keep the existing target 'sclite' to avoid breaking the users who might have
|
|
|
|
# scripted it in.
|
|
|
|
.PHONY: sclite.done sctk_cleaned sctk_made
|
|
|
|
|
|
|
|
sclite.done sctk_made: sctk/.compiled
|
|
|
|
touch sclite.done
|
|
|
|
|
|
|
|
sctk/.compiled: sctk
|
|
|
|
rm -f sctk/.compiled
|
|
|
|
$(SCTK_MKENV) $(MAKE) -C sctk config
|
|
|
|
$(SCTK_MKENV) $(MAKE) -C sctk all doc
|
|
|
|
$(MAKE) -C sctk install
|
|
|
|
touch sctk/.compiled
|
|
|
|
|
|
|
|
# The GitHub archive unpacks into SCTK-{40-character-long-hash}/
|
|
|
|
sctk: sctk-$(SCTK_GITHASH).tar.gz
|
|
|
|
tar zxvf sctk-$(SCTK_GITHASH).tar.gz
|
|
|
|
rm -rf sctk-$(SCTK_GITHASH) sctk
|
|
|
|
mv SCTK-$(SCTK_GITHASH)* sctk-$(SCTK_GITHASH)
|
|
|
|
ln -s sctk-$(SCTK_GITHASH) sctk
|
|
|
|
touch sctk-$(SCTK_GITHASH).tar.gz
|
|
|
|
|
|
|
|
sctk-$(SCTK_GITHASH).tar.gz:
|
|
|
|
if [ -d '$(DOWNLOAD_DIR)' ]; then \
|
|
|
|
cp -p '$(DOWNLOAD_DIR)/sctk-$(SCTK_GITHASH).tar.gz' .; \
|
|
|
|
else \
|
|
|
|
$(WGET) -nv -T 10 -t 3 -O sctk-$(SCTK_GITHASH).tar.gz \
|
|
|
|
https://github.com/usnistgov/SCTK/archive/$(SCTK_GITHASH).tar.gz; \
|
|
|
|
fi
|
|
|
|
|
|
|
|
sctk_cleaned:
|
|
|
|
-for d in sctk/ sctk-*/; do \
|
|
|
|
[ ! -f $$d/.compiled ] || $(MAKE) -C $$d clean; \
|
|
|
|
rm -f $$d/.compiled; \
|
|
|
|
done
|