You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
3.8 KiB
103 lines
3.8 KiB
2 years ago
|
([简体中文](./README_cn.md)|English)
|
||
|
# Speech SSL (Self-Supervised Learning)
|
||
|
|
||
|
## Introduction
|
||
|
Speech SSL, or Self-Supervised Learning, refers to a training method on the large-scale unlabeled speech dataset. The model trained in this way can produce a good acoustic representation, and can be applied to other downstream speech tasks by fine-tuning on labeled datasets.
|
||
|
|
||
|
This demo is an implementation to recognize text or produce the acoustic representation from a specific audio file by speech ssl models. It can be done by a single command or a few lines in python using `PaddleSpeech`.
|
||
|
|
||
|
## Usage
|
||
|
### 1. Installation
|
||
|
see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md).
|
||
|
|
||
|
You can choose one way from easy, meduim and hard to install paddlespeech.
|
||
|
|
||
|
### 2. Prepare Input File
|
||
|
The input of this demo should be a WAV file(`.wav`), and the sample rate must be the same as the model.
|
||
|
|
||
|
Here are sample files for this demo that can be downloaded:
|
||
|
```bash
|
||
|
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
|
||
|
```
|
||
|
|
||
|
### 3. Usage
|
||
|
- Command Line(Recommended)
|
||
|
```bash
|
||
|
# to recognize text
|
||
|
paddlespeech ssl --task asr --lang en --input ./en.wav
|
||
|
|
||
|
# to get acoustic representation
|
||
|
paddlespeech ssl --task vector --lang en --input ./en.wav
|
||
|
```
|
||
|
|
||
|
Usage:
|
||
|
```bash
|
||
|
paddlespeech ssl --help
|
||
|
```
|
||
|
Arguments:
|
||
|
- `input`(required): Audio file to recognize.
|
||
|
- `model`: Model type of asr task. Default: `wav2vec2ASR_librispeech`.
|
||
|
- `task`: Output type. Default: `asr`.
|
||
|
- `lang`: Model language. Default: `en`.
|
||
|
- `sample_rate`: Sample rate of the model. Default: `16000`.
|
||
|
- `config`: Config of asr task. Use pretrained model when it is None. Default: `None`.
|
||
|
- `ckpt_path`: Model checkpoint. Use pretrained model when it is None. Default: `None`.
|
||
|
- `yes`: No additional parameters required. Once set this parameter, it means accepting the request of the program by default, which includes transforming the audio sample rate. Default: `False`.
|
||
|
- `device`: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
|
||
|
- `verbose`: Show the log information.
|
||
|
|
||
|
|
||
|
- Python API
|
||
|
```python
|
||
|
import paddle
|
||
|
from paddlespeech.cli.ssl import SSLExecutor
|
||
|
|
||
|
ssl_executor = SSLExecutor()
|
||
|
|
||
|
# to recognize text
|
||
|
text = ssl_executor(
|
||
|
model='wav2vec2ASR_librispeech',
|
||
|
task='asr',
|
||
|
lang='en',
|
||
|
sample_rate=16000,
|
||
|
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
|
||
|
ckpt_path=None,
|
||
|
audio_file='./en.wav',
|
||
|
device=paddle.get_device())
|
||
|
print('ASR Result: \n{}'.format(text))
|
||
|
|
||
|
# to get acoustic representation
|
||
|
feature = ssl_executor(
|
||
|
model='wav2vec2',
|
||
|
task='vector',
|
||
|
lang='en',
|
||
|
sample_rate=16000,
|
||
|
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
|
||
|
ckpt_path=None,
|
||
|
audio_file='./en.wav',
|
||
|
device=paddle.get_device())
|
||
|
print('Representation: \n{}'.format(feature))
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
```bash
|
||
|
ASR Result:
|
||
|
我认为跑步最重要的就是给我带来了身体健康
|
||
|
|
||
|
Representation:
|
||
|
Tensor(shape=[1, 164, 1024], dtype=float32, place=Place(gpu:0), stop_gradient=True,
|
||
|
[[[ 0.02351918, -0.12980647, 0.17868176, ..., 0.10118122,
|
||
|
-0.04614586, 0.17853957],
|
||
|
[ 0.02361383, -0.12978461, 0.17870593, ..., 0.10103855,
|
||
|
-0.04638699, 0.17855372],
|
||
|
[ 0.02345137, -0.12982975, 0.17883906, ..., 0.10104341,
|
||
|
-0.04643029, 0.17856732],
|
||
|
...,
|
||
|
[ 0.02313030, -0.12918393, 0.17845058, ..., 0.10073373,
|
||
|
-0.04701405, 0.17862988],
|
||
|
[ 0.02176583, -0.12929161, 0.17797582, ..., 0.10097728,
|
||
|
-0.04687393, 0.17864393],
|
||
|
[ 0.05269200, 0.01297141, -0.23336855, ..., -0.11257174,
|
||
|
-0.17227529, 0.20338398]]])
|
||
|
```
|