([简体中文](./README_cn.md)|English) # Speech SSL (Self-Supervised Learning) ## Introduction Speech SSL, or Self-Supervised Learning, refers to a training method on the large-scale unlabeled speech dataset. The model trained in this way can produce a good acoustic representation, and can be applied to other downstream speech tasks by fine-tuning on labeled datasets. This demo is an implementation to recognize text or produce the acoustic representation from a specific audio file by speech ssl models. It can be done by a single command or a few lines in python using `PaddleSpeech`. ## Usage ### 1. Installation see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md). You can choose one way from easy, meduim and hard to install paddlespeech. ### 2. Prepare Input File The input of this demo should be a WAV file(`.wav`), and the sample rate must be the same as the model. Here are sample files for this demo that can be downloaded: ```bash wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav ``` ### 3. Usage - Command Line(Recommended) ```bash # to recognize text paddlespeech ssl --task asr --lang en --input ./en.wav # to get acoustic representation paddlespeech ssl --task vector --lang en --input ./en.wav ``` Usage: ```bash paddlespeech ssl --help ``` Arguments: - `input`(required): Audio file to recognize. - `model`: Model type of asr task. Default: `wav2vec2ASR_librispeech`. - `task`: Output type. Default: `asr`. - `lang`: Model language. Default: `en`. - `sample_rate`: Sample rate of the model. Default: `16000`. - `config`: Config of asr task. Use pretrained model when it is None. Default: `None`. - `ckpt_path`: Model checkpoint. Use pretrained model when it is None. Default: `None`. - `yes`: No additional parameters required. Once set this parameter, it means accepting the request of the program by default, which includes transforming the audio sample rate. Default: `False`. - `device`: Choose device to execute model inference. Default: default device of paddlepaddle in current environment. - `verbose`: Show the log information. - Python API ```python import paddle from paddlespeech.cli.ssl import SSLExecutor ssl_executor = SSLExecutor() # to recognize text text = ssl_executor( model='wav2vec2ASR_librispeech', task='asr', lang='en', sample_rate=16000, config=None, # Set `config` and `ckpt_path` to None to use pretrained model. ckpt_path=None, audio_file='./en.wav', device=paddle.get_device()) print('ASR Result: \n{}'.format(text)) # to get acoustic representation feature = ssl_executor( model='wav2vec2', task='vector', lang='en', sample_rate=16000, config=None, # Set `config` and `ckpt_path` to None to use pretrained model. ckpt_path=None, audio_file='./en.wav', device=paddle.get_device()) print('Representation: \n{}'.format(feature)) ``` Output: ```bash ASR Result: 我认为跑步最重要的就是给我带来了身体健康 Representation: Tensor(shape=[1, 164, 1024], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[[ 0.02351918, -0.12980647, 0.17868176, ..., 0.10118122, -0.04614586, 0.17853957], [ 0.02361383, -0.12978461, 0.17870593, ..., 0.10103855, -0.04638699, 0.17855372], [ 0.02345137, -0.12982975, 0.17883906, ..., 0.10104341, -0.04643029, 0.17856732], ..., [ 0.02313030, -0.12918393, 0.17845058, ..., 0.10073373, -0.04701405, 0.17862988], [ 0.02176583, -0.12929161, 0.17797582, ..., 0.10097728, -0.04687393, 0.17864393], [ 0.05269200, 0.01297141, -0.23336855, ..., -0.11257174, -0.17227529, 0.20338398]]]) ```