You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
5.9 KiB
179 lines
5.9 KiB
2 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import logging
|
||
|
import os
|
||
|
import shutil
|
||
|
from pathlib import Path
|
||
|
from typing import List
|
||
|
|
||
|
import jsonlines
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
from paddle import DataParallel
|
||
|
from paddle import distributed as dist
|
||
|
from paddle.io import DataLoader
|
||
|
from paddle.io import DistributedBatchSampler
|
||
|
|
||
|
from paddlespeech.t2s.datasets.am_batch_fn import fastspeech2_multi_spk_batch_fn
|
||
|
from paddlespeech.t2s.datasets.am_batch_fn import fastspeech2_single_spk_batch_fn
|
||
|
from paddlespeech.t2s.datasets.data_table import DataTable
|
||
|
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2
|
||
|
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Evaluator
|
||
|
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Updater
|
||
|
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
|
||
|
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
|
||
|
from paddlespeech.t2s.training.optimizer import build_optimizers
|
||
|
from paddlespeech.t2s.training.seeding import seed_everything
|
||
|
from paddlespeech.t2s.training.trainer import Trainer
|
||
|
|
||
|
|
||
|
def freeze_layer(model, layers: List[str]):
|
||
|
"""freeze layers
|
||
|
|
||
|
Args:
|
||
|
layers (List[str]): frozen layers
|
||
|
"""
|
||
|
for layer in layers:
|
||
|
for param in eval("model." + layer + ".parameters()"):
|
||
|
param.trainable = False
|
||
|
|
||
|
|
||
|
def train_sp(args, config):
|
||
|
# decides device type and whether to run in parallel
|
||
|
# setup running environment correctly
|
||
|
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
|
||
|
paddle.set_device("cpu")
|
||
|
else:
|
||
|
paddle.set_device("gpu")
|
||
|
world_size = paddle.distributed.get_world_size()
|
||
|
if world_size > 1:
|
||
|
paddle.distributed.init_parallel_env()
|
||
|
|
||
|
# set the random seed, it is a must for multiprocess training
|
||
|
seed_everything(config.seed)
|
||
|
|
||
|
print(
|
||
|
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
|
||
|
)
|
||
|
fields = [
|
||
|
"text", "text_lengths", "speech", "speech_lengths", "durations",
|
||
|
"pitch", "energy"
|
||
|
]
|
||
|
converters = {"speech": np.load, "pitch": np.load, "energy": np.load}
|
||
|
spk_num = None
|
||
|
if args.speaker_dict is not None:
|
||
|
print("multiple speaker fastspeech2!")
|
||
|
collate_fn = fastspeech2_multi_spk_batch_fn
|
||
|
with open(args.speaker_dict, 'rt') as f:
|
||
|
spk_id = [line.strip().split() for line in f.readlines()]
|
||
|
spk_num = len(spk_id)
|
||
|
fields += ["spk_id"]
|
||
|
elif args.voice_cloning:
|
||
|
print("Training voice cloning!")
|
||
|
collate_fn = fastspeech2_multi_spk_batch_fn
|
||
|
fields += ["spk_emb"]
|
||
|
converters["spk_emb"] = np.load
|
||
|
else:
|
||
|
print("single speaker fastspeech2!")
|
||
|
collate_fn = fastspeech2_single_spk_batch_fn
|
||
|
print("spk_num:", spk_num)
|
||
|
|
||
|
# dataloader has been too verbose
|
||
|
logging.getLogger("DataLoader").disabled = True
|
||
|
|
||
|
# construct dataset for training and validation
|
||
|
with jsonlines.open(args.train_metadata, 'r') as reader:
|
||
|
train_metadata = list(reader)
|
||
|
train_dataset = DataTable(
|
||
|
data=train_metadata,
|
||
|
fields=fields,
|
||
|
converters=converters, )
|
||
|
with jsonlines.open(args.dev_metadata, 'r') as reader:
|
||
|
dev_metadata = list(reader)
|
||
|
dev_dataset = DataTable(
|
||
|
data=dev_metadata,
|
||
|
fields=fields,
|
||
|
converters=converters, )
|
||
|
|
||
|
# collate function and dataloader
|
||
|
|
||
|
train_sampler = DistributedBatchSampler(
|
||
|
train_dataset,
|
||
|
batch_size=config.batch_size,
|
||
|
shuffle=True,
|
||
|
drop_last=True)
|
||
|
|
||
|
print("samplers done!")
|
||
|
|
||
|
train_dataloader = DataLoader(
|
||
|
train_dataset,
|
||
|
batch_sampler=train_sampler,
|
||
|
collate_fn=collate_fn,
|
||
|
num_workers=config.num_workers)
|
||
|
|
||
|
dev_dataloader = DataLoader(
|
||
|
dev_dataset,
|
||
|
shuffle=False,
|
||
|
drop_last=False,
|
||
|
batch_size=config.batch_size,
|
||
|
collate_fn=collate_fn,
|
||
|
num_workers=config.num_workers)
|
||
|
print("dataloaders done!")
|
||
|
|
||
|
with open(args.phones_dict, "r") as f:
|
||
|
phn_id = [line.strip().split() for line in f.readlines()]
|
||
|
vocab_size = len(phn_id)
|
||
|
print("vocab_size:", vocab_size)
|
||
|
|
||
|
odim = config.n_mels
|
||
|
model = FastSpeech2(
|
||
|
idim=vocab_size, odim=odim, spk_num=spk_num, **config["model"])
|
||
|
|
||
|
# freeze layer
|
||
|
if args.frozen_layers != []:
|
||
|
freeze_layer(model, args.frozen_layers)
|
||
|
|
||
|
if world_size > 1:
|
||
|
model = DataParallel(model)
|
||
|
print("model done!")
|
||
|
|
||
|
optimizer = build_optimizers(model, **config["optimizer"])
|
||
|
print("optimizer done!")
|
||
|
|
||
|
output_dir = Path(args.output_dir)
|
||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||
|
if dist.get_rank() == 0:
|
||
|
config_name = args.config.split("/")[-1]
|
||
|
# copy conf to output_dir
|
||
|
shutil.copyfile(args.config, output_dir / config_name)
|
||
|
|
||
|
updater = FastSpeech2Updater(
|
||
|
model=model,
|
||
|
optimizer=optimizer,
|
||
|
dataloader=train_dataloader,
|
||
|
output_dir=output_dir,
|
||
|
**config["updater"])
|
||
|
|
||
|
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
|
||
|
|
||
|
evaluator = FastSpeech2Evaluator(
|
||
|
model, dev_dataloader, output_dir=output_dir, **config["updater"])
|
||
|
|
||
|
if dist.get_rank() == 0:
|
||
|
trainer.extend(evaluator, trigger=(1, "epoch"))
|
||
|
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
|
||
|
trainer.extend(
|
||
|
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
|
||
|
trainer.run()
|