# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil from pathlib import Path from typing import List import jsonlines import numpy as np import paddle from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from paddlespeech.t2s.datasets.am_batch_fn import fastspeech2_multi_spk_batch_fn from paddlespeech.t2s.datasets.am_batch_fn import fastspeech2_single_spk_batch_fn from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.models.fastspeech2 import FastSpeech2 from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Evaluator from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Updater from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.optimizer import build_optimizers from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.trainer import Trainer def freeze_layer(model, layers: List[str]): """freeze layers Args: layers (List[str]): frozen layers """ for layer in layers: for param in eval("model." + layer + ".parameters()"): param.trainable = False def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0: paddle.set_device("cpu") else: paddle.set_device("gpu") world_size = paddle.distributed.get_world_size() if world_size > 1: paddle.distributed.init_parallel_env() # set the random seed, it is a must for multiprocess training seed_everything(config.seed) print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) fields = [ "text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy" ] converters = {"speech": np.load, "pitch": np.load, "energy": np.load} spk_num = None if args.speaker_dict is not None: print("multiple speaker fastspeech2!") collate_fn = fastspeech2_multi_spk_batch_fn with open(args.speaker_dict, 'rt') as f: spk_id = [line.strip().split() for line in f.readlines()] spk_num = len(spk_id) fields += ["spk_id"] elif args.voice_cloning: print("Training voice cloning!") collate_fn = fastspeech2_multi_spk_batch_fn fields += ["spk_emb"] converters["spk_emb"] = np.load else: print("single speaker fastspeech2!") collate_fn = fastspeech2_single_spk_batch_fn print("spk_num:", spk_num) # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for training and validation with jsonlines.open(args.train_metadata, 'r') as reader: train_metadata = list(reader) train_dataset = DataTable( data=train_metadata, fields=fields, converters=converters, ) with jsonlines.open(args.dev_metadata, 'r') as reader: dev_metadata = list(reader) dev_dataset = DataTable( data=dev_metadata, fields=fields, converters=converters, ) # collate function and dataloader train_sampler = DistributedBatchSampler( train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True) print("samplers done!") train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=collate_fn, num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, shuffle=False, drop_last=False, batch_size=config.batch_size, collate_fn=collate_fn, num_workers=config.num_workers) print("dataloaders done!") with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) odim = config.n_mels model = FastSpeech2( idim=vocab_size, odim=odim, spk_num=spk_num, **config["model"]) # freeze layer if args.frozen_layers != []: freeze_layer(model, args.frozen_layers) if world_size > 1: model = DataParallel(model) print("model done!") optimizer = build_optimizers(model, **config["optimizer"]) print("optimizer done!") output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) if dist.get_rank() == 0: config_name = args.config.split("/")[-1] # copy conf to output_dir shutil.copyfile(args.config, output_dir / config_name) updater = FastSpeech2Updater( model=model, optimizer=optimizer, dataloader=train_dataloader, output_dir=output_dir, **config["updater"]) trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir) evaluator = FastSpeech2Evaluator( model, dev_dataloader, output_dir=output_dir, **config["updater"]) if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) trainer.run()