You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/engine/acs/python/acs_engine.py

219 lines
6.9 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import json
import os
import re
import numpy as np
import paddle
import soundfile
import websocket
from paddlespeech.cli.log import logger
from paddlespeech.server.engine.base_engine import BaseEngine
class ACSEngine(BaseEngine):
def __init__(self):
"""The ACSEngine Engine
"""
super(ACSEngine, self).__init__()
logger.info("Create the ACSEngine Instance")
self.word_list = []
def init(self, config: dict):
"""Init the ACSEngine Engine
Args:
config (dict): The server configuation
Returns:
bool: The engine instance flag
"""
logger.info("Init the acs engine")
try:
self.config = config
self.device = self.config.get("device", paddle.get_device())
paddle.set_device(self.device)
logger.info(f"ACS Engine set the device: {self.device}")
except BaseException as e:
logger.error(
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
)
logger.error("Initialize Text server engine Failed on device: %s." %
(self.device))
return False
self.read_search_words()
# init the asr url
self.url = "ws://" + self.config.asr_server_ip + ":" + str(
self.config.asr_server_port) + "/paddlespeech/asr/streaming"
logger.info("Init the acs engine successfully")
return True
def read_search_words(self):
word_list = self.config.word_list
if word_list is None:
logger.error(
"No word list file in config, please set the word list parameter"
)
return
if not os.path.exists(word_list):
logger.error("Please input correct word list file")
return
with open(word_list, 'r') as fp:
self.word_list = [line.strip() for line in fp.readlines()]
logger.info(f"word list: {self.word_list}")
def get_asr_content(self, audio_data):
"""Get the streaming asr result
Args:
audio_data (_type_): _description_
Returns:
_type_: _description_
"""
logger.info("send a message to the server")
if self.url is None:
logger.error("No asr server, please input valid ip and port")
return ""
ws = websocket.WebSocket()
ws.connect(self.url)
# with websocket.WebSocket.connect(self.url) as ws:
audio_info = json.dumps(
{
"name": "test.wav",
"signal": "start",
"nbest": 1
},
sort_keys=True,
indent=4,
separators=(',', ': '))
ws.send(audio_info)
msg = ws.recv()
logger.info("client receive msg={}".format(msg))
# send the total audio data
for chunk_data in self.read_wave(audio_data):
ws.send_binary(chunk_data.tobytes())
msg = ws.recv()
msg = json.loads(msg)
logger.info(f"audio result: {msg}")
# 3. send chunk audio data to engine
logger.info("send the end signal")
audio_info = json.dumps(
{
"name": "test.wav",
"signal": "end",
"nbest": 1
},
sort_keys=True,
indent=4,
separators=(',', ': '))
ws.send(audio_info)
msg = ws.recv()
msg = json.loads(msg)
logger.info(f"the final result: {msg}")
ws.close()
return msg
def read_wave(self, audio_data: str):
"""read the audio file from specific wavfile path
Args:
audio_data (str): the audio data,
we assume that audio sample rate matches the model
Yields:
numpy.array: the samall package audio pcm data
"""
samples, sample_rate = soundfile.read(audio_data, dtype='int16')
x_len = len(samples)
assert sample_rate == 16000
chunk_size = int(85 * sample_rate / 1000) # 85ms, sample_rate = 16kHz
if x_len % chunk_size != 0:
padding_len_x = chunk_size - x_len % chunk_size
else:
padding_len_x = 0
padding = np.zeros((padding_len_x), dtype=samples.dtype)
padded_x = np.concatenate([samples, padding], axis=0)
assert (x_len + padding_len_x) % chunk_size == 0
num_chunk = (x_len + padding_len_x) / chunk_size
num_chunk = int(num_chunk)
for i in range(0, num_chunk):
start = i * chunk_size
end = start + chunk_size
x_chunk = padded_x[start:end]
yield x_chunk
def get_macthed_word(self, msg):
"""Get the matched info in msg
Args:
msg (dict): the asr info, including the asr result and time stamp
Returns:
acs_result, asr_result: the acs result and the asr result
"""
asr_result = msg['result']
time_stamp = msg['times']
acs_result = []
# search for each word in self.word_list
offset = self.config.offset
max_ed = time_stamp[-1]['ed']
for w in self.word_list:
# search the w in asr_result and the index in asr_result
for m in re.finditer(w, asr_result):
start = max(time_stamp[m.start(0)]['bg'] - offset, 0)
end = min(time_stamp[m.end(0) - 1]['ed'] + offset, max_ed)
logger.info(f'start: {start}, end: {end}')
acs_result.append({'w': w, 'bg': start, 'ed': end})
return acs_result, asr_result
def run(self, audio_data):
"""process the audio data in acs engine
the engine does not store any data, so all the request use the self.run api
Args:
audio_data (str): the audio data
Returns:
acs_result, asr_result: the acs result and the asr result
"""
logger.info("start to process the audio content search")
msg = self.get_asr_content(io.BytesIO(audio_data))
acs_result, asr_result = self.get_macthed_word(msg)
logger.info(f'the asr result {asr_result}')
logger.info(f'the acs result: {acs_result}')
return acs_result, asr_result