# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import json import os import re import numpy as np import paddle import soundfile import websocket from paddlespeech.cli.log import logger from paddlespeech.server.engine.base_engine import BaseEngine class ACSEngine(BaseEngine): def __init__(self): """The ACSEngine Engine """ super(ACSEngine, self).__init__() logger.info("Create the ACSEngine Instance") self.word_list = [] def init(self, config: dict): """Init the ACSEngine Engine Args: config (dict): The server configuation Returns: bool: The engine instance flag """ logger.info("Init the acs engine") try: self.config = config self.device = self.config.get("device", paddle.get_device()) paddle.set_device(self.device) logger.info(f"ACS Engine set the device: {self.device}") except BaseException as e: logger.error( "Set device failed, please check if device is already used and the parameter 'device' in the yaml file" ) logger.error("Initialize Text server engine Failed on device: %s." % (self.device)) return False self.read_search_words() # init the asr url self.url = "ws://" + self.config.asr_server_ip + ":" + str( self.config.asr_server_port) + "/paddlespeech/asr/streaming" logger.info("Init the acs engine successfully") return True def read_search_words(self): word_list = self.config.word_list if word_list is None: logger.error( "No word list file in config, please set the word list parameter" ) return if not os.path.exists(word_list): logger.error("Please input correct word list file") return with open(word_list, 'r') as fp: self.word_list = [line.strip() for line in fp.readlines()] logger.info(f"word list: {self.word_list}") def get_asr_content(self, audio_data): """Get the streaming asr result Args: audio_data (_type_): _description_ Returns: _type_: _description_ """ logger.info("send a message to the server") if self.url is None: logger.error("No asr server, please input valid ip and port") return "" ws = websocket.WebSocket() ws.connect(self.url) # with websocket.WebSocket.connect(self.url) as ws: audio_info = json.dumps( { "name": "test.wav", "signal": "start", "nbest": 1 }, sort_keys=True, indent=4, separators=(',', ': ')) ws.send(audio_info) msg = ws.recv() logger.info("client receive msg={}".format(msg)) # send the total audio data for chunk_data in self.read_wave(audio_data): ws.send_binary(chunk_data.tobytes()) msg = ws.recv() msg = json.loads(msg) logger.info(f"audio result: {msg}") # 3. send chunk audio data to engine logger.info("send the end signal") audio_info = json.dumps( { "name": "test.wav", "signal": "end", "nbest": 1 }, sort_keys=True, indent=4, separators=(',', ': ')) ws.send(audio_info) msg = ws.recv() msg = json.loads(msg) logger.info(f"the final result: {msg}") ws.close() return msg def read_wave(self, audio_data: str): """read the audio file from specific wavfile path Args: audio_data (str): the audio data, we assume that audio sample rate matches the model Yields: numpy.array: the samall package audio pcm data """ samples, sample_rate = soundfile.read(audio_data, dtype='int16') x_len = len(samples) assert sample_rate == 16000 chunk_size = int(85 * sample_rate / 1000) # 85ms, sample_rate = 16kHz if x_len % chunk_size != 0: padding_len_x = chunk_size - x_len % chunk_size else: padding_len_x = 0 padding = np.zeros((padding_len_x), dtype=samples.dtype) padded_x = np.concatenate([samples, padding], axis=0) assert (x_len + padding_len_x) % chunk_size == 0 num_chunk = (x_len + padding_len_x) / chunk_size num_chunk = int(num_chunk) for i in range(0, num_chunk): start = i * chunk_size end = start + chunk_size x_chunk = padded_x[start:end] yield x_chunk def get_macthed_word(self, msg): """Get the matched info in msg Args: msg (dict): the asr info, including the asr result and time stamp Returns: acs_result, asr_result: the acs result and the asr result """ asr_result = msg['result'] time_stamp = msg['times'] acs_result = [] # search for each word in self.word_list offset = self.config.offset max_ed = time_stamp[-1]['ed'] for w in self.word_list: # search the w in asr_result and the index in asr_result for m in re.finditer(w, asr_result): start = max(time_stamp[m.start(0)]['bg'] - offset, 0) end = min(time_stamp[m.end(0) - 1]['ed'] + offset, max_ed) logger.info(f'start: {start}, end: {end}') acs_result.append({'w': w, 'bg': start, 'ed': end}) return acs_result, asr_result def run(self, audio_data): """process the audio data in acs engine the engine does not store any data, so all the request use the self.run api Args: audio_data (str): the audio data Returns: acs_result, asr_result: the acs result and the asr result """ logger.info("start to process the audio content search") msg = self.get_asr_content(io.BytesIO(audio_data)) acs_result, asr_result = self.get_macthed_word(msg) logger.info(f'the asr result {asr_result}') logger.info(f'the acs result: {acs_result}') return acs_result, asr_result