|
|
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "base/basic_types.h"
|
|
|
|
#include "kaldi/base/kaldi-types.h"
|
|
|
|
#include "kaldi/util/options-itf.h"
|
|
|
|
|
|
|
|
DECLARE_int32(subsampling_rate);
|
|
|
|
DECLARE_string(model_path);
|
|
|
|
DECLARE_string(param_path);
|
|
|
|
DECLARE_string(model_input_names);
|
|
|
|
DECLARE_string(model_output_names);
|
|
|
|
DECLARE_string(model_cache_names);
|
|
|
|
DECLARE_string(model_cache_shapes);
|
|
|
|
#ifdef USE_ONNX
|
|
|
|
DECLARE_bool(with_onnx_model);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace ppspeech {
|
|
|
|
|
|
|
|
struct ModelOptions {
|
|
|
|
// common
|
|
|
|
int subsample_rate{1};
|
|
|
|
int thread_num{1}; // predictor thread pool size for ds2;
|
|
|
|
bool use_gpu{false};
|
|
|
|
std::string model_path;
|
|
|
|
#ifdef USE_ONNX
|
|
|
|
bool with_onnx_model{false};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
std::string param_path;
|
|
|
|
|
|
|
|
// ds2 for inference
|
|
|
|
std::string input_names{};
|
|
|
|
std::string output_names{};
|
|
|
|
std::string cache_names{};
|
|
|
|
std::string cache_shape{};
|
|
|
|
bool switch_ir_optim{false};
|
|
|
|
bool enable_fc_padding{false};
|
|
|
|
bool enable_profile{false};
|
|
|
|
|
|
|
|
static ModelOptions InitFromFlags() {
|
|
|
|
ModelOptions opts;
|
|
|
|
opts.subsample_rate = FLAGS_subsampling_rate;
|
|
|
|
LOG(INFO) << "subsampling rate: " << opts.subsample_rate;
|
|
|
|
opts.model_path = FLAGS_model_path;
|
|
|
|
LOG(INFO) << "model path: " << opts.model_path;
|
|
|
|
#ifdef USE_ONNX
|
|
|
|
opts.with_onnx_model = FLAGS_with_onnx_model;
|
|
|
|
LOG(INFO) << "with onnx model: " << opts.with_onnx_model;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
opts.param_path = FLAGS_param_path;
|
|
|
|
LOG(INFO) << "param path: " << opts.param_path;
|
|
|
|
|
|
|
|
LOG(INFO) << "DS2 param: ";
|
|
|
|
opts.cache_names = FLAGS_model_cache_names;
|
|
|
|
LOG(INFO) << " cache names: " << opts.cache_names;
|
|
|
|
opts.cache_shape = FLAGS_model_cache_shapes;
|
|
|
|
LOG(INFO) << " cache shape: " << opts.cache_shape;
|
|
|
|
opts.input_names = FLAGS_model_input_names;
|
|
|
|
LOG(INFO) << " input names: " << opts.input_names;
|
|
|
|
opts.output_names = FLAGS_model_output_names;
|
|
|
|
LOG(INFO) << " output names: " << opts.output_names;
|
|
|
|
return opts;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct NnetOut {
|
|
|
|
// nnet out. maybe logprob or prob. Almost time this is logprob.
|
|
|
|
std::vector<kaldi::BaseFloat> logprobs;
|
|
|
|
int32 vocab_dim;
|
|
|
|
|
|
|
|
// nnet state. Only using in Attention model.
|
|
|
|
std::vector<std::vector<kaldi::BaseFloat>> encoder_outs;
|
|
|
|
|
|
|
|
NnetOut() : logprobs({}), vocab_dim(-1), encoder_outs({}) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class NnetInterface {
|
|
|
|
public:
|
|
|
|
virtual ~NnetInterface() {}
|
|
|
|
|
|
|
|
// forward feat with nnet.
|
|
|
|
// nnet do not cache feats, feats cached by frontend.
|
|
|
|
// nnet cache model state, i.e. encoder_outs, att_cache, cnn_cache,
|
|
|
|
// frame_offset.
|
|
|
|
virtual void FeedForward(const std::vector<kaldi::BaseFloat>& features,
|
|
|
|
const int32& feature_dim,
|
|
|
|
NnetOut* out) = 0;
|
|
|
|
|
|
|
|
virtual void AttentionRescoring(const std::vector<std::vector<int>>& hyps,
|
|
|
|
float reverse_weight,
|
|
|
|
std::vector<float>* rescoring_score) = 0;
|
|
|
|
|
|
|
|
// reset nnet state, e.g. nnet_logprob_cache_, offset_, encoder_outs_.
|
|
|
|
virtual void Reset() = 0;
|
|
|
|
|
|
|
|
// true, nnet output is logprob; otherwise is prob,
|
|
|
|
virtual bool IsLogProb() = 0;
|
|
|
|
|
|
|
|
// using to get encoder outs. e.g. seq2seq with Attention model.
|
|
|
|
virtual void EncoderOuts(
|
|
|
|
std::vector<std::vector<kaldi::BaseFloat>>* encoder_out) const = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class NnetBase : public NnetInterface {
|
|
|
|
public:
|
|
|
|
int SubsamplingRate() const { return subsampling_rate_; }
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int subsampling_rate_{1};
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace ppspeech
|