[runtime] support onnx runtime && support ios compile (#3101)

* support vad ios compile

* support onnx model recognize

* add build ios sh
pull/3112/head
masimeng1994 2 years ago committed by GitHub
parent 767f6dd4e2
commit 9e5a39cae0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,7 +1,7 @@
# >=3.17 support -DCMAKE_FIND_DEBUG_MODE=ON
cmake_minimum_required(VERSION 3.17 FATAL_ERROR)
set(CMAKE_PROJECT_INCLUDE_BEFORE "${CMAKE_CURRENT_SOURCE_DIR}/cmake/EnableCMP0048.cmake")
set(CMAKE_PROJECT_INCLUDE_BEFORE "${CMAKE_CURRENT_SOURCE_DIR}/cmake/EnableCMP0077.cmake")
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
@ -17,8 +17,8 @@ set(PPS_VERSION "${PPS_VERSION_MAJOR}.${PPS_VERSION_MINOR}.${PPS_VERSION_PATCH}"
# compiler option
# Keep the same with openfst, -fPIC or -fpic
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} --std=c++14 -pthread -fPIC -O0 -Wall -g -ldl")
SET(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} --std=c++14 -pthread -fPIC -O0 -Wall -g -ggdb -ldl")
SET(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} --std=c++14 -pthread -fPIC -O3 -Wall -ldl")
SET(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} --std=c++14 -pthread -fPIC -O0 -Wall -g -ggdb")
SET(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} --std=c++14 -pthread -fPIC -O3 -Wall")
set(CMAKE_VERBOSE_MAKEFILE ON)
set(CMAKE_FIND_DEBUG_MODE OFF)
@ -40,6 +40,10 @@ if(ANDROID)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE BOTH)
endif()
if(BUILD_IN_MACOS)
add_definitions("-DOS_MACOSX")
endif()
# install dir into `build/install`
set(CMAKE_INSTALL_PREFIX ${CMAKE_CURRENT_BINARY_DIR}/install)
@ -67,6 +71,8 @@ option(WITH_GPU "NNet using GPU." OFF)
option(WITH_PROFILING "enable c++ profling" OFF)
option(WITH_TESTING "unit test" ON)
option(WITH_ONNX "u2 support onnx runtime" ON)
###############################################################################
# Include Third Party
###############################################################################
@ -75,6 +81,12 @@ include(gflags)
include(glog)
include(pybind)
#onnx
if(WITH_ONNX)
include(onnx)
endif()
# gtest
if(WITH_TESTING)
include(gtest) # download, build, install gtest

@ -0,0 +1,91 @@
# https://www.jianshu.com/p/33672fb819f5
PATH="/Applications/CMake.app/Contents/bin":"$PATH"
tools_dir=$1
ios_toolchain_cmake=${tools_dir}/"/ios-cmake-4.2.0/ios.toolchain.cmake"
fastdeploy_dir=${tools_dir}"/fastdeploy-ort-mac-build/"
build_targets=("OS64")
build_type_array=("Release")
#static_name="libocr"
#lib_name="libocr"
# Switch to workpath
current_path=`cd $(dirname $0);pwd`
work_path=${current_path}/
build_path=${current_path}/build/
output_path=${current_path}/output/
cd ${work_path}
# Clean
rm -rf ${build_path}
rm -rf ${output_path}
if [ "$1"x = "clean"x ]; then
exit 0
fi
# Build Every Target
for target in "${build_targets[@]}"
do
for build_type in "${build_type_array[@]}"
do
echo -e "\033[1;36;40mBuilding ${build_type} ${target} ... \033[0m"
target_build_path=${build_path}/${target}/${build_type}/
mkdir -p ${target_build_path}
cd ${target_build_path}
if [ $? -ne 0 ];then
echo -e "\033[1;31;40mcd ${target_build_path} failed \033[0m"
exit -1
fi
if [ ${target} == "OS64" ];then
fastdeploy_install_dir=${fastdeploy_dir}/arm64
else
fastdeploy_install_dir=""
echo "fastdeploy_install_dir is null"
exit -1
fi
cmake -DCMAKE_TOOLCHAIN_FILE=${ios_toolchain_cmake} \
-DBUILD_IN_MACOS=ON \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_ASR=OFF \
-DWITH_CLS=OFF \
-DWITH_VAD=ON \
-DFASTDEPLOY_INSTALL_DIR=${fastdeploy_install_dir} \
-DPLATFORM=${target} ../../../
cmake --build . --config ${build_type}
mkdir output
cp engine/vad/interface/libpps_vad_interface.a output
cp engine/vad/interface/vad_interface_main.app/vad_interface_main output
cp ${fastdeploy_install_dir}/lib/libfastdeploy.dylib output
cp ${fastdeploy_install_dir}/third_libs/install/onnxruntime/lib/libonnxruntime.dylib output
done
done
## combine all ios libraries
#DEVROOT=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/
#LIPO_TOOL=${DEVROOT}/usr/bin/lipo
#LIBRARY_PATH=${build_path}
#LIBRARY_OUTPUT_PATH=${output_path}/IOS
#mkdir -p ${LIBRARY_OUTPUT_PATH}
#
#${LIPO_TOOL} \
# -arch i386 ${LIBRARY_PATH}/ios_x86/Release/${lib_name}.a \
# -arch x86_64 ${LIBRARY_PATH}/ios_x86_64/Release/${lib_name}.a \
# -arch armv7 ${LIBRARY_PATH}/ios_armv7/Release/${lib_name}.a \
# -arch armv7s ${LIBRARY_PATH}/ios_armv7s/Release/${lib_name}.a \
# -arch arm64 ${LIBRARY_PATH}/ios_armv8/Release/${lib_name}.a \
# -output ${LIBRARY_OUTPUT_PATH}/${lib_name}.a -create
#
#cp ${work_path}/lib/houyi/lib/ios/libhouyi_score.a ${LIBRARY_OUTPUT_PATH}/
#cp ${work_path}/interface/ocr-interface.h ${output_path}
#cp ${work_path}/version/release.v ${output_path}
#
#echo -e "\033[1;36;40mBuild All Target Success At:\n${output_path}\033[0m"
#exit 0

@ -0,0 +1 @@
cmake_policy(SET CMP0077 NEW)

@ -17,10 +17,10 @@ else() # UNIX
-DCMAKE_C_FLAGS_RELEASE=${CMAKE_C_FLAGS_RELEASE}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DWITH_GFLAGS=OFF
-DBUILD_TESTING=OFF
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
${EXTERNAL_OPTIONAL_ARGS}
)
set(BUILD_TESTING OFF)
FetchContent_MakeAvailable(glog)
include_directories(${glog_BINARY_DIR} ${glog_SOURCE_DIR}/src)
endif()

@ -0,0 +1,52 @@
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang, Di Wu)
# 2022 ZeXuan Li (lizexuan@huya.com)
# Xingchen Song(sxc19@mails.tsinghua.edu.cn)
# hamddct@gmail.com (Mddct)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if(WITH_ONNX)
set(ONNX_VERSION "1.12.0")
if(${CMAKE_SYSTEM_NAME} STREQUAL "Windows")
set(ONNX_URL "https://github.com/microsoft/onnxruntime/releases/download/v${ONNX_VERSION}/onnxruntime-win-x64-${ONNX_VERSION}.zip")
set(URL_HASH "SHA256=8b5d61204989350b7904ac277f5fbccd3e6736ddbb6ec001e412723d71c9c176")
elseif(${CMAKE_SYSTEM_NAME} STREQUAL "Linux")
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64")
set(ONNX_URL "https://github.com/microsoft/onnxruntime/releases/download/v${ONNX_VERSION}/onnxruntime-linux-aarch64-${ONNX_VERSION}.tgz")
set(URL_HASH "SHA256=5820d9f343df73c63b6b2b174a1ff62575032e171c9564bcf92060f46827d0ac")
else()
set(ONNX_URL "https://github.com/microsoft/onnxruntime/releases/download/v${ONNX_VERSION}/onnxruntime-linux-x64-${ONNX_VERSION}.tgz")
set(URL_HASH "SHA256=5d503ce8540358b59be26c675e42081be14a3e833a5301926f555451046929c5")
endif()
elseif(${CMAKE_SYSTEM_NAME} STREQUAL "Darwin")
set(ONNX_URL "https://github.com/microsoft/onnxruntime/releases/download/v${ONNX_VERSION}/onnxruntime-osx-x86_64-${ONNX_VERSION}.tgz")
set(URL_HASH "SHA256=09b17f712f8c6f19bb63da35d508815b443cbb473e16c6192abfaa297c02f600")
else()
message(FATAL_ERROR "Unsupported CMake System Name '${CMAKE_SYSTEM_NAME}' (expected 'Windows', 'Linux' or 'Darwin')")
endif()
FetchContent_Declare(onnxruntime
URL ${ONNX_URL}
URL_HASH ${URL_HASH}
)
FetchContent_MakeAvailable(onnxruntime)
include_directories(${onnxruntime_SOURCE_DIR}/include)
link_directories(${onnxruntime_SOURCE_DIR}/lib)
if(MSVC)
file(GLOB ONNX_DLLS "${onnxruntime_SOURCE_DIR}/lib/*.dll")
file(COPY ${ONNX_DLLS} DESTINATION ${CMAKE_BINARY_DIR}/bin/${CMAKE_BUILD_TYPE})
endif()
add_definitions(-DUSE_ONNX)
endif()

@ -1,5 +1,3 @@
cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
project(speechx LANGUAGES CXX)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})

@ -39,6 +39,9 @@ DEFINE_int32(nnet_decoder_chunk, 1, "paddle nnet forward chunk");
// nnet
DEFINE_string(vocab_path, "", "nnet vocab path.");
DEFINE_string(model_path, "avg_1.jit.pdmodel", "paddle nnet model");
#ifdef USE_ONNX
DEFINE_bool(with_onnx_model, false, "True mean the model path is onnx model path");
#endif
DEFINE_string(param_path, "avg_1.jit.pdiparams", "paddle nnet model param");
DEFINE_string(
model_input_names,

@ -1,9 +1,14 @@
set(srcs decodable.cc nnet_producer.cc)
list(APPEND srcs u2_nnet.cc)
if(WITH_ONNX)
list(APPEND srcs u2_onnx_nnet.cc)
endif()
add_library(nnet STATIC ${srcs})
target_link_libraries(nnet utils)
if(WITH_ONNX)
target_link_libraries(nnet onnxruntime)
endif()
target_compile_options(nnet PUBLIC ${PADDLE_COMPILE_FLAGS})
target_include_directories(nnet PUBLIC ${pybind11_INCLUDE_DIRS} ${PROJECT_SOURCE_DIR})

@ -24,6 +24,9 @@ DECLARE_string(model_input_names);
DECLARE_string(model_output_names);
DECLARE_string(model_cache_names);
DECLARE_string(model_cache_shapes);
#ifdef USE_ONNX
DECLARE_bool(with_onnx_model);
#endif
namespace ppspeech {
@ -33,6 +36,9 @@ struct ModelOptions {
int thread_num{1}; // predictor thread pool size for ds2;
bool use_gpu{false};
std::string model_path;
#ifdef USE_ONNX
bool with_onnx_model{false};
#endif
std::string param_path;
@ -51,6 +57,10 @@ struct ModelOptions {
LOG(INFO) << "subsampling rate: " << opts.subsample_rate;
opts.model_path = FLAGS_model_path;
LOG(INFO) << "model path: " << opts.model_path;
#ifdef USE_ONNX
opts.with_onnx_model = FLAGS_with_onnx_model;
LOG(INFO) << "with onnx model: " << opts.with_onnx_model;
#endif
opts.param_path = FLAGS_param_path;
LOG(INFO) << "param path: " << opts.param_path;

@ -12,7 +12,11 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef USE_ONNX
#include "nnet/u2_nnet.h"
#else
#include "nnet/u2_onnx_nnet.h"
#endif
#include "base/common.h"
#include "decoder/param.h"
#include "frontend/feature_pipeline.h"
@ -55,11 +59,18 @@ int main(int argc, char* argv[]) {
kaldi::BaseFloatMatrixWriter nnet_out_writer(FLAGS_nnet_prob_wspecifier);
ppspeech::ModelOptions model_opts = ppspeech::ModelOptions::InitFromFlags();
#ifdef USE_ONNX
ppspeech::U2OnnxNnet::InitEngineThreads(1);
#endif
ppspeech::FeaturePipelineOptions feature_opts =
ppspeech::FeaturePipelineOptions::InitFromFlags();
feature_opts.assembler_opts.fill_zero = false;
#ifndef USE_ONNX
std::shared_ptr<ppspeech::U2Nnet> nnet(new ppspeech::U2Nnet(model_opts));
#else
std::shared_ptr<ppspeech::U2OnnxNnet> nnet(new ppspeech::U2OnnxNnet(model_opts));
#endif
std::shared_ptr<ppspeech::FeaturePipeline> feature_pipeline(
new ppspeech::FeaturePipeline(feature_opts));
std::shared_ptr<ppspeech::NnetProducer> nnet_producer(

@ -0,0 +1,448 @@
// Copyright (c) 2020 Mobvoi Inc (Binbin Zhang, Di Wu)
// 2022 ZeXuan Li (lizexuan@huya.com)
// Xingchen Song(sxc19@mails.tsinghua.edu.cn)
// hamddct@gmail.com (Mddct)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "nnet/u2_onnx_nnet.h"
namespace ppspeech {
Ort::Env U2OnnxNnet::env_ = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "");
Ort::SessionOptions U2OnnxNnet::session_options_ = Ort::SessionOptions();
void U2OnnxNnet::InitEngineThreads(int num_threads) {
session_options_.SetIntraOpNumThreads(num_threads);
}
void U2OnnxNnet::LoadModel(const std::string& model_dir) {
std::string encoder_onnx_path = model_dir + "/encoder.onnx";
std::string rescore_onnx_path = model_dir + "/decoder.onnx";
std::string ctc_onnx_path = model_dir + "/ctc.onnx";
// 1. Load sessions
try {
#ifdef _MSC_VER
encoder_session_ = std::make_shared<Ort::Session>(
env_, ToWString(encoder_onnx_path).c_str(), session_options_);
rescore_session_ = std::make_shared<Ort::Session>(
env_, ToWString(rescore_onnx_path).c_str(), session_options_);
ctc_session_ = std::make_shared<Ort::Session>(
env_, ToWString(ctc_onnx_path).c_str(), session_options_);
#else
encoder_session_ = std::make_shared<Ort::Session>(
env_, encoder_onnx_path.c_str(), session_options_);
rescore_session_ = std::make_shared<Ort::Session>(
env_, rescore_onnx_path.c_str(), session_options_);
ctc_session_ = std::make_shared<Ort::Session>(env_, ctc_onnx_path.c_str(),
session_options_);
#endif
} catch (std::exception const& e) {
LOG(ERROR) << "error when load onnx model: " << e.what();
exit(0);
}
// 2. Read metadata
auto model_metadata = encoder_session_->GetModelMetadata();
Ort::AllocatorWithDefaultOptions allocator;
encoder_output_size_ =
atoi(model_metadata.LookupCustomMetadataMap("output_size", allocator));
num_blocks_ =
atoi(model_metadata.LookupCustomMetadataMap("num_blocks", allocator));
head_ = atoi(model_metadata.LookupCustomMetadataMap("head", allocator));
cnn_module_kernel_ = atoi(
model_metadata.LookupCustomMetadataMap("cnn_module_kernel", allocator));
subsampling_rate_ = atoi(
model_metadata.LookupCustomMetadataMap("subsampling_rate", allocator));
right_context_ =
atoi(model_metadata.LookupCustomMetadataMap("right_context", allocator));
sos_ = atoi(model_metadata.LookupCustomMetadataMap("sos_symbol", allocator));
eos_ = atoi(model_metadata.LookupCustomMetadataMap("eos_symbol", allocator));
is_bidecoder_ = atoi(model_metadata.LookupCustomMetadataMap(
"is_bidirectional_decoder", allocator));
chunk_size_ =
atoi(model_metadata.LookupCustomMetadataMap("chunk_size", allocator));
num_left_chunks_ =
atoi(model_metadata.LookupCustomMetadataMap("left_chunks", allocator));
LOG(INFO) << "Onnx Model Info:";
LOG(INFO) << "\tencoder_output_size " << encoder_output_size_;
LOG(INFO) << "\tnum_blocks " << num_blocks_;
LOG(INFO) << "\thead " << head_;
LOG(INFO) << "\tcnn_module_kernel " << cnn_module_kernel_;
LOG(INFO) << "\tsubsampling_rate " << subsampling_rate_;
LOG(INFO) << "\tright_context " << right_context_;
LOG(INFO) << "\tsos " << sos_;
LOG(INFO) << "\teos " << eos_;
LOG(INFO) << "\tis bidirectional decoder " << is_bidecoder_;
LOG(INFO) << "\tchunk_size " << chunk_size_;
LOG(INFO) << "\tnum_left_chunks " << num_left_chunks_;
// 3. Read model nodes
LOG(INFO) << "Onnx Encoder:";
GetInputOutputInfo(encoder_session_, &encoder_in_names_, &encoder_out_names_);
LOG(INFO) << "Onnx CTC:";
GetInputOutputInfo(ctc_session_, &ctc_in_names_, &ctc_out_names_);
LOG(INFO) << "Onnx Rescore:";
GetInputOutputInfo(rescore_session_, &rescore_in_names_, &rescore_out_names_);
}
U2OnnxNnet::U2OnnxNnet(const ModelOptions& opts) : opts_(opts) {
LoadModel(opts_.model_path);
}
// shallow copy
U2OnnxNnet::U2OnnxNnet(const U2OnnxNnet& other) {
// metadatas
encoder_output_size_ = other.encoder_output_size_;
num_blocks_ = other.num_blocks_;
head_ = other.head_;
cnn_module_kernel_ = other.cnn_module_kernel_;
right_context_ = other.right_context_;
subsampling_rate_ = other.subsampling_rate_;
sos_ = other.sos_;
eos_ = other.eos_;
is_bidecoder_ = other.is_bidecoder_;
chunk_size_ = other.chunk_size_;
num_left_chunks_ = other.num_left_chunks_;
offset_ = other.offset_;
// sessions
encoder_session_ = other.encoder_session_;
ctc_session_ = other.ctc_session_;
rescore_session_ = other.rescore_session_;
// node names
encoder_in_names_ = other.encoder_in_names_;
encoder_out_names_ = other.encoder_out_names_;
ctc_in_names_ = other.ctc_in_names_;
ctc_out_names_ = other.ctc_out_names_;
rescore_in_names_ = other.rescore_in_names_;
rescore_out_names_ = other.rescore_out_names_;
}
void U2OnnxNnet::GetInputOutputInfo(
const std::shared_ptr<Ort::Session>& session,
std::vector<const char*>* in_names, std::vector<const char*>* out_names) {
Ort::AllocatorWithDefaultOptions allocator;
// Input info
int num_nodes = session->GetInputCount();
in_names->resize(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
char* name = session->GetInputName(i, allocator);
Ort::TypeInfo type_info = session->GetInputTypeInfo(i);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType type = tensor_info.GetElementType();
std::vector<int64_t> node_dims = tensor_info.GetShape();
std::stringstream shape;
for (auto j : node_dims) {
shape << j;
shape << " ";
}
LOG(INFO) << "\tInput " << i << " : name=" << name << " type=" << type
<< " dims=" << shape.str();
(*in_names)[i] = name;
}
// Output info
num_nodes = session->GetOutputCount();
out_names->resize(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
char* name = session->GetOutputName(i, allocator);
Ort::TypeInfo type_info = session->GetOutputTypeInfo(i);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType type = tensor_info.GetElementType();
std::vector<int64_t> node_dims = tensor_info.GetShape();
std::stringstream shape;
for (auto j : node_dims) {
shape << j;
shape << " ";
}
LOG(INFO) << "\tOutput " << i << " : name=" << name << " type=" << type
<< " dims=" << shape.str();
(*out_names)[i] = name;
}
}
std::shared_ptr<NnetBase> U2OnnxNnet::Clone() const {
auto asr_model = std::make_shared<U2OnnxNnet>(*this);
// reset inner state for new decoding
asr_model->Reset();
return asr_model;
}
void U2OnnxNnet::Reset() {
offset_ = 0;
encoder_outs_.clear();
cached_feats_.clear();
// Reset att_cache
Ort::MemoryInfo memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
if (num_left_chunks_ > 0) {
int required_cache_size = chunk_size_ * num_left_chunks_;
offset_ = required_cache_size;
att_cache_.resize(num_blocks_ * head_ * required_cache_size *
encoder_output_size_ / head_ * 2,
0.0);
const int64_t att_cache_shape[] = {num_blocks_, head_, required_cache_size,
encoder_output_size_ / head_ * 2};
att_cache_ort_ = Ort::Value::CreateTensor<float>(
memory_info, att_cache_.data(), att_cache_.size(), att_cache_shape, 4);
} else {
att_cache_.resize(0, 0.0);
const int64_t att_cache_shape[] = {num_blocks_, head_, 0,
encoder_output_size_ / head_ * 2};
att_cache_ort_ = Ort::Value::CreateTensor<float>(
memory_info, att_cache_.data(), att_cache_.size(), att_cache_shape, 4);
}
// Reset cnn_cache
cnn_cache_.resize(
num_blocks_ * encoder_output_size_ * (cnn_module_kernel_ - 1), 0.0);
const int64_t cnn_cache_shape[] = {num_blocks_, 1, encoder_output_size_,
cnn_module_kernel_ - 1};
cnn_cache_ort_ = Ort::Value::CreateTensor<float>(
memory_info, cnn_cache_.data(), cnn_cache_.size(), cnn_cache_shape, 4);
}
void U2OnnxNnet::FeedForward(const std::vector<BaseFloat>& features,
const int32& feature_dim,
NnetOut* out) {
kaldi::Timer timer;
std::vector<kaldi::BaseFloat> ctc_probs;
ForwardEncoderChunkImpl(
features, feature_dim, &out->logprobs, &out->vocab_dim);
VLOG(1) << "FeedForward cost: " << timer.Elapsed() << " sec. "
<< features.size() / feature_dim << " frames.";
}
void U2OnnxNnet::ForwardEncoderChunkImpl(
const std::vector<kaldi::BaseFloat>& chunk_feats,
const int32& feat_dim,
std::vector<kaldi::BaseFloat>* out_prob,
int32* vocab_dim) {
Ort::MemoryInfo memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
// 1. Prepare onnx required data, splice cached_feature_ and chunk_feats
// chunk
int num_frames = chunk_feats.size() / feat_dim;
VLOG(3) << "num_frames: " << num_frames;
VLOG(3) << "feat_dim: " << feat_dim;
const int feature_dim = feat_dim;
std::vector<float> feats;
feats.insert(feats.end(), chunk_feats.begin(), chunk_feats.end());
const int64_t feats_shape[3] = {1, num_frames, feature_dim};
Ort::Value feats_ort = Ort::Value::CreateTensor<float>(
memory_info, feats.data(), feats.size(), feats_shape, 3);
// offset
int64_t offset_int64 = static_cast<int64_t>(offset_);
Ort::Value offset_ort = Ort::Value::CreateTensor<int64_t>(
memory_info, &offset_int64, 1, std::vector<int64_t>{}.data(), 0);
// required_cache_size
int64_t required_cache_size = chunk_size_ * num_left_chunks_;
Ort::Value required_cache_size_ort = Ort::Value::CreateTensor<int64_t>(
memory_info, &required_cache_size, 1, std::vector<int64_t>{}.data(), 0);
// att_mask
Ort::Value att_mask_ort{nullptr};
std::vector<uint8_t> att_mask(required_cache_size + chunk_size_, 1);
if (num_left_chunks_ > 0) {
int chunk_idx = offset_ / chunk_size_ - num_left_chunks_;
if (chunk_idx < num_left_chunks_) {
for (int i = 0; i < (num_left_chunks_ - chunk_idx) * chunk_size_; ++i) {
att_mask[i] = 0;
}
}
const int64_t att_mask_shape[] = {1, 1, required_cache_size + chunk_size_};
att_mask_ort = Ort::Value::CreateTensor<bool>(
memory_info, reinterpret_cast<bool*>(att_mask.data()), att_mask.size(),
att_mask_shape, 3);
}
// 2. Encoder chunk forward
std::vector<Ort::Value> inputs;
for (auto name : encoder_in_names_) {
if (!strcmp(name, "chunk")) {
inputs.emplace_back(std::move(feats_ort));
} else if (!strcmp(name, "offset")) {
inputs.emplace_back(std::move(offset_ort));
} else if (!strcmp(name, "required_cache_size")) {
inputs.emplace_back(std::move(required_cache_size_ort));
} else if (!strcmp(name, "att_cache")) {
inputs.emplace_back(std::move(att_cache_ort_));
} else if (!strcmp(name, "cnn_cache")) {
inputs.emplace_back(std::move(cnn_cache_ort_));
} else if (!strcmp(name, "att_mask")) {
inputs.emplace_back(std::move(att_mask_ort));
}
}
std::vector<Ort::Value> ort_outputs = encoder_session_->Run(
Ort::RunOptions{nullptr}, encoder_in_names_.data(), inputs.data(),
inputs.size(), encoder_out_names_.data(), encoder_out_names_.size());
offset_ += static_cast<int>(
ort_outputs[0].GetTensorTypeAndShapeInfo().GetShape()[1]);
att_cache_ort_ = std::move(ort_outputs[1]);
cnn_cache_ort_ = std::move(ort_outputs[2]);
std::vector<Ort::Value> ctc_inputs;
ctc_inputs.emplace_back(std::move(ort_outputs[0]));
std::vector<Ort::Value> ctc_ort_outputs = ctc_session_->Run(
Ort::RunOptions{nullptr}, ctc_in_names_.data(), ctc_inputs.data(),
ctc_inputs.size(), ctc_out_names_.data(), ctc_out_names_.size());
encoder_outs_.push_back(std::move(ctc_inputs[0]));
float* logp_data = ctc_ort_outputs[0].GetTensorMutableData<float>();
auto type_info = ctc_ort_outputs[0].GetTensorTypeAndShapeInfo();
// Copy to output, (B=1,T,D)
std::vector<int64_t> ctc_log_probs_shape = type_info.GetShape();
CHECK_EQ(ctc_log_probs_shape.size(), 3);
int B = ctc_log_probs_shape[0];
CHECK_EQ(B, 1);
int T = ctc_log_probs_shape[1];
int D = ctc_log_probs_shape[2];
*vocab_dim = D;
out_prob->resize(T * D);
std::memcpy(
out_prob->data(), logp_data, T * D * sizeof(kaldi::BaseFloat));
return;
}
float U2OnnxNnet::ComputeAttentionScore(const float* prob,
const std::vector<int>& hyp, int eos,
int decode_out_len) {
float score = 0.0f;
for (size_t j = 0; j < hyp.size(); ++j) {
score += *(prob + j * decode_out_len + hyp[j]);
}
score += *(prob + hyp.size() * decode_out_len + eos);
return score;
}
void U2OnnxNnet::AttentionRescoring(const std::vector<std::vector<int>>& hyps,
float reverse_weight,
std::vector<float>* rescoring_score) {
Ort::MemoryInfo memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
CHECK(rescoring_score != nullptr);
int num_hyps = hyps.size();
rescoring_score->resize(num_hyps, 0.0f);
if (num_hyps == 0) {
return;
}
// No encoder output
if (encoder_outs_.size() == 0) {
return;
}
std::vector<int64_t> hyps_lens;
int max_hyps_len = 0;
for (size_t i = 0; i < num_hyps; ++i) {
int length = hyps[i].size() + 1;
max_hyps_len = std::max(length, max_hyps_len);
hyps_lens.emplace_back(static_cast<int64_t>(length));
}
std::vector<float> rescore_input;
int encoder_len = 0;
for (int i = 0; i < encoder_outs_.size(); i++) {
float* encoder_outs_data = encoder_outs_[i].GetTensorMutableData<float>();
auto type_info = encoder_outs_[i].GetTensorTypeAndShapeInfo();
for (int j = 0; j < type_info.GetElementCount(); j++) {
rescore_input.emplace_back(encoder_outs_data[j]);
}
encoder_len += type_info.GetShape()[1];
}
const int64_t decode_input_shape[] = {1, encoder_len, encoder_output_size_};
std::vector<int64_t> hyps_pad;
for (size_t i = 0; i < num_hyps; ++i) {
const std::vector<int>& hyp = hyps[i];
hyps_pad.emplace_back(sos_);
size_t j = 0;
for (; j < hyp.size(); ++j) {
hyps_pad.emplace_back(hyp[j]);
}
if (j == max_hyps_len - 1) {
continue;
}
for (; j < max_hyps_len - 1; ++j) {
hyps_pad.emplace_back(0);
}
}
const int64_t hyps_pad_shape[] = {num_hyps, max_hyps_len};
const int64_t hyps_lens_shape[] = {num_hyps};
Ort::Value decode_input_tensor_ = Ort::Value::CreateTensor<float>(
memory_info, rescore_input.data(), rescore_input.size(),
decode_input_shape, 3);
Ort::Value hyps_pad_tensor_ = Ort::Value::CreateTensor<int64_t>(
memory_info, hyps_pad.data(), hyps_pad.size(), hyps_pad_shape, 2);
Ort::Value hyps_lens_tensor_ = Ort::Value::CreateTensor<int64_t>(
memory_info, hyps_lens.data(), hyps_lens.size(), hyps_lens_shape, 1);
std::vector<Ort::Value> rescore_inputs;
rescore_inputs.emplace_back(std::move(hyps_pad_tensor_));
rescore_inputs.emplace_back(std::move(hyps_lens_tensor_));
rescore_inputs.emplace_back(std::move(decode_input_tensor_));
std::vector<Ort::Value> rescore_outputs = rescore_session_->Run(
Ort::RunOptions{nullptr}, rescore_in_names_.data(), rescore_inputs.data(),
rescore_inputs.size(), rescore_out_names_.data(),
rescore_out_names_.size());
float* decoder_outs_data = rescore_outputs[0].GetTensorMutableData<float>();
float* r_decoder_outs_data = rescore_outputs[1].GetTensorMutableData<float>();
auto type_info = rescore_outputs[0].GetTensorTypeAndShapeInfo();
int decode_out_len = type_info.GetShape()[2];
for (size_t i = 0; i < num_hyps; ++i) {
const std::vector<int>& hyp = hyps[i];
float score = 0.0f;
// left to right decoder score
score = ComputeAttentionScore(
decoder_outs_data + max_hyps_len * decode_out_len * i, hyp, eos_,
decode_out_len);
// Optional: Used for right to left score
float r_score = 0.0f;
if (is_bidecoder_ && reverse_weight > 0) {
std::vector<int> r_hyp(hyp.size());
std::reverse_copy(hyp.begin(), hyp.end(), r_hyp.begin());
// right to left decoder score
r_score = ComputeAttentionScore(
r_decoder_outs_data + max_hyps_len * decode_out_len * i, r_hyp, eos_,
decode_out_len);
}
// combined left-to-right and right-to-left score
(*rescoring_score)[i] =
score * (1 - reverse_weight) + r_score * reverse_weight;
}
}
void U2OnnxNnet::EncoderOuts(
std::vector<std::vector<kaldi::BaseFloat>>* encoder_out) const {
}
} //namepace ppspeech

@ -0,0 +1,116 @@
// Copyright (c) 2020 Mobvoi Inc (Binbin Zhang, Di Wu)
// 2022 ZeXuan Li (lizexuan@huya.com)
// Xingchen Song(sxc19@mails.tsinghua.edu.cn)
// hamddct@gmail.com (Mddct)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "base/common.h"
#include "matrix/kaldi-matrix.h"
#include "nnet/nnet_itf.h"
#include "nnet/u2_nnet.h"
#include "onnxruntime_cxx_api.h" // NOLINT
namespace ppspeech {
class U2OnnxNnet : public U2NnetBase {
public:
static void InitEngineThreads(int num_threads = 1);
public:
explicit U2OnnxNnet(const ModelOptions& opts);
U2OnnxNnet(const U2OnnxNnet& other);
void FeedForward(const std::vector<kaldi::BaseFloat>& features,
const int32& feature_dim,
NnetOut* out) override;
void Reset() override;
bool IsLogProb() override { return true; }
void Dim();
void LoadModel(const std::string& model_dir);
// void Warmup();
// std::shared_ptr<paddle::jit::Layer> model() const { return model_; }
std::shared_ptr<NnetBase> Clone() const override;
void ForwardEncoderChunkImpl(
const std::vector<kaldi::BaseFloat>& chunk_feats,
const int32& feat_dim,
std::vector<kaldi::BaseFloat>* ctc_probs,
int32* vocab_dim) override;
// float ComputePathScore(const paddle::Tensor& prob,
// const std::vector<int>& hyp,
// int eos);
float ComputeAttentionScore(const float* prob, const std::vector<int>& hyp,
int eos, int decode_out_len);
void AttentionRescoring(const std::vector<std::vector<int>>& hyps,
float reverse_weight,
std::vector<float>* rescoring_score) override;
// debug
// void FeedEncoderOuts(const paddle::Tensor& encoder_out);
void EncoderOuts(
std::vector<std::vector<kaldi::BaseFloat>>* encoder_out) const;
// copy from wenet
void GetInputOutputInfo(const std::shared_ptr<Ort::Session>& session,
std::vector<const char*>* in_names,
std::vector<const char*>* out_names);
private:
ModelOptions opts_;
int encoder_output_size_ = 0;
int num_blocks_ = 0;
int cnn_module_kernel_ = 0;
int head_ = 0;
// sessions
// NOTE(Mddct): The Env holds the logging state used by all other objects.
// One Env must be created before using any other Onnxruntime functionality.
static Ort::Env env_; // shared environment across threads.
static Ort::SessionOptions session_options_;
std::shared_ptr<Ort::Session> encoder_session_ = nullptr;
std::shared_ptr<Ort::Session> rescore_session_ = nullptr;
std::shared_ptr<Ort::Session> ctc_session_ = nullptr;
// node names
std::vector<const char*> encoder_in_names_, encoder_out_names_;
std::vector<const char*> ctc_in_names_, ctc_out_names_;
std::vector<const char*> rescore_in_names_, rescore_out_names_;
// caches
Ort::Value att_cache_ort_{nullptr};
Ort::Value cnn_cache_ort_{nullptr};
std::vector<Ort::Value> encoder_outs_;
// NOTE: Instead of making a copy of the xx_cache, ONNX only maintains
// its data pointer when initializing xx_cache_ort (see https://github.com/
// microsoft/onnxruntime/blob/master/onnxruntime/core/framework
// /tensor.cc#L102-L129), so we need the following variables to keep
// our data "alive" during the lifetime of decoder.
std::vector<float> att_cache_;
std::vector<float> cnn_cache_;
};
} // namespace ppspeech

@ -10,7 +10,6 @@ target_link_libraries(recognizer PUBLIC decoder)
set(TEST_BINS
u2_recognizer_main
u2_recognizer_thread_main
u2_recognizer_batch_main
recognizer_batch_main
)

@ -15,6 +15,9 @@
#include "recognizer/u2_recognizer.h"
#include "nnet/u2_nnet.h"
#ifdef USE_ONNX
#include "nnet/u2_onnx_nnet.h"
#endif
namespace ppspeech {
@ -28,7 +31,16 @@ U2Recognizer::U2Recognizer(const U2RecognizerResource& resource)
const FeaturePipelineOptions& feature_opts = resource.feature_pipeline_opts;
std::shared_ptr<FeaturePipeline> feature_pipeline(
new FeaturePipeline(feature_opts));
std::shared_ptr<NnetBase> nnet(new U2Nnet(resource.model_opts));
std::shared_ptr<NnetBase> nnet;
#ifndef USE_ONNX
nnet.reset(new U2Nnet(resource.model_opts));
#else
if (resource.model_opts.with_onnx_model){
nnet.reset(new U2OnnxNnet(resource.model_opts));
} else {
nnet.reset(new U2Nnet(resource.model_opts));
}
#endif
nnet_producer_.reset(new NnetProducer(nnet, feature_pipeline));
decodable_.reset(new Decodable(nnet_producer_, am_scale));

@ -78,14 +78,12 @@ int main(int argc, char* argv[]) {
}
recognizer_ptr->Accept(wav_chunk);
if (cur_chunk_size == (tot_samples - sample_offset)) {
recognizer_ptr->SetInputFinished();
}
// no overlap
sample_offset += cur_chunk_size;
}
CHECK(sample_offset == tot_samples);
recognizer_ptr->SetInputFinished();
recognizer_ptr->WaitDecodeFinished();
kaldi::Timer timer;

@ -8,12 +8,12 @@ else()
endif()
if(ANDROID)
set(PPS_GLOB_LIB "base/log_impl.h")
set(PPS_GLOG_LIB "base/log_impl.h")
else() #UNIX
if(WITH_ASR)
set(PPS_GLOB_LIB "fst/log.h")
set(PPS_GLOG_LIB "fst/log.h")
else()
set(PPS_GLOB_LIB "glog/logging.h")
set(PPS_GLOG_LIB "glog/logging.h")
endif()
endif()

@ -14,4 +14,4 @@
#pragma once
#include "@PPS_FLAGS_LIB@"
#include "@PPS_FLAGS_LIB@"

@ -14,4 +14,4 @@
#pragma once
#include "@PPS_GLOB_LIB@"
#include "@PPS_GLOG_LIB@"

@ -28,12 +28,18 @@ FeaturePipeline::FeaturePipeline(const FeaturePipelineOptions& opts)
base_feature.reset(
new ppspeech::Fbank(opts.fbank_opts, std::move(data_source)));
CHECK_NE(opts.cmvn_file, "");
unique_ptr<FrontendInterface> cmvn(
new ppspeech::CMVN(opts.cmvn_file, std::move(base_feature)));
unique_ptr<FrontendInterface> cache(
new ppspeech::FeatureCache(kint16max, std::move(cmvn)));
// CHECK_NE(opts.cmvn_file, "");
unique_ptr<FrontendInterface> cache;
if (opts.cmvn_file != ""){
unique_ptr<FrontendInterface> cmvn(
new ppspeech::CMVN(opts.cmvn_file, std::move(base_feature)));
cache.reset(
new ppspeech::FeatureCache(kint16max, std::move(cmvn)));
} else {
cache.reset(
new ppspeech::FeatureCache(kint16max, std::move(base_feature)));
}
base_extractor_.reset(
new ppspeech::Assembler(opts.assembler_opts, std::move(cache)));

@ -49,4 +49,16 @@ std::string StrJoin(const std::vector<std::string>& strs, const char* delim) {
return ss.str();
}
#ifdef _MSC_VER
std::wstring ToWString(const std::string& str) {
unsigned len = str.size() * 2;
setlocale(LC_CTYPE, "");
wchar_t* p = new wchar_t[len];
mbstowcs(p, str.c_str(), len);
std::wstring wstr(p);
delete[] p;
return wstr;
}
#endif
} // namespace ppspeech

@ -25,4 +25,8 @@ std::vector<std::string> StrSplit(const std::string& str,
std::string StrJoin(const std::vector<std::string>& strs, const char* delim);
#ifdef _MSC_VER
std::wstring ToWString(const std::string& str);
#endif
} // namespace ppspeech

@ -1,6 +1,4 @@
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}/../
)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_subdirectory(nnet)

@ -11,7 +11,6 @@ add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_link_libraries(${bin_name} pps_vad_interface)
# set_target_properties(${bin_name} PROPERTIES PUBLIC_HEADER "vad_interface.h;../frontend/wav.h")
file(RELATIVE_PATH DEST_DIR ${ENGINE_ROOT} ${CMAKE_CURRENT_SOURCE_DIR})
install(TARGETS pps_vad_interface DESTINATION lib)
install(FILES vad_interface.h DESTINATION include/${DEST_DIR})

@ -10,7 +10,6 @@ set(bin_name vad_nnet_main)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_link_libraries(${bin_name} pps_vad)
file(RELATIVE_PATH DEST_DIR ${ENGINE_ROOT} ${CMAKE_CURRENT_SOURCE_DIR})
install(TARGETS pps_vad DESTINATION lib)
install(TARGETS glog DESTINATION lib)
Loading…
Cancel
Save