You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.3 KiB
106 lines
3.3 KiB
4 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import numpy as np
|
||
|
|
||
|
from deepspeech.models.network import DeepSpeech2
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
batch_size = 2
|
||
|
feat_dim = 161
|
||
|
max_len = 100
|
||
|
audio = np.random.randn(batch_size, feat_dim, max_len)
|
||
|
audio_len = np.random.randint(100, size=batch_size, dtype='int32')
|
||
|
audio_len[-1] = 100
|
||
|
text = np.array([[1, 2], [1, 2]], dtype='int32')
|
||
|
text_len = np.array([2] * batch_size, dtype='int32')
|
||
|
|
||
|
place = paddle.CUDAPlace(0)
|
||
|
audio = paddle.to_tensor(
|
||
|
audio, dtype='float32', place=place, stop_gradient=True)
|
||
|
audio_len = paddle.to_tensor(
|
||
|
audio_len, dtype='int64', place=place, stop_gradient=True)
|
||
|
text = paddle.to_tensor(
|
||
|
text, dtype='int32', place=place, stop_gradient=True)
|
||
|
text_len = paddle.to_tensor(
|
||
|
text_len, dtype='int64', place=place, stop_gradient=True)
|
||
|
|
||
|
print(audio.shape)
|
||
|
print(audio_len.shape)
|
||
|
print(text.shape)
|
||
|
print(text_len.shape)
|
||
|
print("-----------------")
|
||
|
|
||
|
model = DeepSpeech2(
|
||
|
feat_size=feat_dim,
|
||
|
dict_size=10,
|
||
|
num_conv_layers=2,
|
||
|
num_rnn_layers=3,
|
||
|
rnn_size=1024,
|
||
|
use_gru=False,
|
||
|
share_rnn_weights=False, )
|
||
|
logits, probs, logits_len = model(audio, text, audio_len, text_len)
|
||
|
print('probs.shape', probs.shape)
|
||
|
print("-----------------")
|
||
|
|
||
|
model2 = DeepSpeech2(
|
||
|
feat_size=feat_dim,
|
||
|
dict_size=10,
|
||
|
num_conv_layers=2,
|
||
|
num_rnn_layers=3,
|
||
|
rnn_size=1024,
|
||
|
use_gru=True,
|
||
|
share_rnn_weights=False, )
|
||
|
logits, probs, logits_len = model2(audio, text, audio_len, text_len)
|
||
|
print('probs.shape', probs.shape)
|
||
|
print("-----------------")
|
||
|
|
||
|
model3 = DeepSpeech2(
|
||
|
feat_size=feat_dim,
|
||
|
dict_size=10,
|
||
|
num_conv_layers=2,
|
||
|
num_rnn_layers=3,
|
||
|
rnn_size=1024,
|
||
|
use_gru=False,
|
||
|
share_rnn_weights=True, )
|
||
|
logits, probs, logits_len = model3(audio, text, audio_len, text_len)
|
||
|
print('probs.shape', probs.shape)
|
||
|
print("-----------------")
|
||
|
|
||
|
model4 = DeepSpeech2(
|
||
|
feat_size=feat_dim,
|
||
|
dict_size=10,
|
||
|
num_conv_layers=2,
|
||
|
num_rnn_layers=3,
|
||
|
rnn_size=1024,
|
||
|
use_gru=True,
|
||
|
share_rnn_weights=True, )
|
||
|
logits, probs, logits_len = model4(audio, text, audio_len, text_len)
|
||
|
print('probs.shape', probs.shape)
|
||
|
print("-----------------")
|
||
|
|
||
|
model5 = DeepSpeech2(
|
||
|
feat_size=feat_dim,
|
||
|
dict_size=10,
|
||
|
num_conv_layers=2,
|
||
|
num_rnn_layers=3,
|
||
|
rnn_size=1024,
|
||
|
use_gru=False,
|
||
|
share_rnn_weights=False, )
|
||
|
logits, probs, logits_len = model5(audio, text, audio_len, text_len)
|
||
|
print('probs.shape', probs.shape)
|
||
|
print("-----------------")
|