[ASR] support wav2vec2 command line and demo (#2658)
* wav2vec2_cli
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* Update RESULTS.md
* Update RESULTS.md
* Update base_commands.py
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
2 years ago
([简体中文](./README_cn.md)|English)
# Speech SSL (Self-Supervised Learning)
## Introduction
Speech SSL, or Self-Supervised Learning, refers to a training method on the large-scale unlabeled speech dataset. The model trained in this way can produce a good acoustic representation, and can be applied to other downstream speech tasks by fine-tuning on labeled datasets.
This demo is an implementation to recognize text or produce the acoustic representation from a specific audio file by speech ssl models. It can be done by a single command or a few lines in python using `PaddleSpeech` .
## Usage
### 1. Installation
see [installation ](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md ).
You can choose one way from easy, meduim and hard to install paddlespeech.
### 2. Prepare Input File
The input of this demo should be a WAV file(`.wav`), and the sample rate must be the same as the model.
Here are sample files for this demo that can be downloaded:
```bash
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
```
### 3. Usage
- Command Line(Recommended)
```bash
# to recognize text
paddlespeech ssl --task asr --lang en --input ./en.wav
# to get acoustic representation
paddlespeech ssl --task vector --lang en --input ./en.wav
```
Usage:
```bash
paddlespeech ssl --help
```
Arguments:
- `input` (required): Audio file to recognize.
- `model` : Model type of asr task. Default: `wav2vec2` , choices: [wav2vec2, hubert, wavlm].
[ASR] support wav2vec2 command line and demo (#2658)
* wav2vec2_cli
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* Update RESULTS.md
* Update RESULTS.md
* Update base_commands.py
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
2 years ago
- `task` : Output type. Default: `asr` .
- `lang` : Model language. Default: `en` .
- `sample_rate` : Sample rate of the model. Default: `16000` .
- `config` : Config of asr task. Use pretrained model when it is None. Default: `None` .
- `ckpt_path` : Model checkpoint. Use pretrained model when it is None. Default: `None` .
- `yes` : No additional parameters required. Once set this parameter, it means accepting the request of the program by default, which includes transforming the audio sample rate. Default: `False` .
- `device` : Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
- `verbose` : Show the log information.
- Python API
```python
import paddle
from paddlespeech.cli.ssl import SSLExecutor
ssl_executor = SSLExecutor()
# to recognize text
text = ssl_executor(
model='wav2vec2',
[ASR] support wav2vec2 command line and demo (#2658)
* wav2vec2_cli
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* Update RESULTS.md
* Update RESULTS.md
* Update base_commands.py
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
2 years ago
task='asr',
lang='en',
sample_rate=16000,
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path=None,
audio_file='./en.wav',
device=paddle.get_device())
print('ASR Result: \n{}'.format(text))
# to get acoustic representation
feature = ssl_executor(
model='wav2vec2',
task='vector',
lang='en',
sample_rate=16000,
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path=None,
audio_file='./en.wav',
device=paddle.get_device())
print('Representation: \n{}'.format(feature))
```
Output:
```bash
ASR Result:
i knocked at the door on the ancient side of the building
[ASR] support wav2vec2 command line and demo (#2658)
* wav2vec2_cli
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* Update RESULTS.md
* Update RESULTS.md
* Update base_commands.py
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
* wav2vec2 demo update: support different optimizer and lr_schedular, align mdoel, update input type, test=asr
2 years ago
Representation:
Tensor(shape=[1, 164, 1024], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[[[ 0.02351918, -0.12980647, 0.17868176, ..., 0.10118122,
-0.04614586, 0.17853957],
[ 0.02361383, -0.12978461, 0.17870593, ..., 0.10103855,
-0.04638699, 0.17855372],
[ 0.02345137, -0.12982975, 0.17883906, ..., 0.10104341,
-0.04643029, 0.17856732],
...,
[ 0.02313030, -0.12918393, 0.17845058, ..., 0.10073373,
-0.04701405, 0.17862988],
[ 0.02176583, -0.12929161, 0.17797582, ..., 0.10097728,
-0.04687393, 0.17864393],
[ 0.05269200, 0.01297141, -0.23336855, ..., -0.11257174,
-0.17227529, 0.20338398]]])
```