|
|
|
"""Trainer for DeepSpeech2 model."""
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import functools
|
|
|
|
import io
|
|
|
|
from model_utils.model import DeepSpeech2Model
|
|
|
|
from model_utils.model_check import check_cuda, check_version
|
|
|
|
from data_utils.data import DataGenerator
|
|
|
|
from utils.utility import add_arguments, print_arguments
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
|
|
add_arg = functools.partial(add_arguments, argparser=parser)
|
|
|
|
# yapf: disable
|
|
|
|
add_arg('batch_size', int, 256, "Minibatch size.")
|
|
|
|
add_arg('num_epoch', int, 200, "# of training epochs.")
|
|
|
|
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
|
|
|
|
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
|
|
|
|
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
|
|
|
|
add_arg('num_iter_print', int, 100, "Every # batch for printing "
|
|
|
|
"train cost.")
|
|
|
|
add_arg('save_epoch', int, 10, "# Every # batch for save checkpoint and modle params ")
|
|
|
|
add_arg('num_samples', int, 10000, "The num of train samples.")
|
|
|
|
add_arg('learning_rate', float, 5e-4, "Learning rate.")
|
|
|
|
add_arg('max_duration', float, 27.0, "Longest audio duration allowed.")
|
|
|
|
add_arg('min_duration', float, 0.0, "Shortest audio duration allowed.")
|
|
|
|
add_arg('test_off', bool, False, "Turn off testing.")
|
|
|
|
add_arg('use_sortagrad', bool, True, "Use SortaGrad or not.")
|
|
|
|
add_arg('use_gpu', bool, True, "Use GPU or not.")
|
|
|
|
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
|
|
|
|
add_arg('is_local', bool, True, "Use pserver or not.")
|
|
|
|
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
|
|
|
|
"bi-directional RNNs. Not for GRU.")
|
|
|
|
add_arg('init_from_pretrained_model',str,
|
|
|
|
None,
|
|
|
|
"If None, the training starts from scratch, "
|
|
|
|
"otherwise, it resumes from the pre-trained model.")
|
|
|
|
|
|
|
|
add_arg('train_manifest', str,
|
|
|
|
'data/librispeech/manifest.train',
|
|
|
|
"Filepath of train manifest.")
|
|
|
|
add_arg('dev_manifest', str,
|
|
|
|
'data/librispeech/manifest.dev-clean',
|
|
|
|
"Filepath of validation manifest.")
|
|
|
|
add_arg('mean_std_path', str,
|
|
|
|
'data/librispeech/mean_std.npz',
|
|
|
|
"Filepath of normalizer's mean & std.")
|
|
|
|
add_arg('vocab_path', str,
|
|
|
|
'data/librispeech/vocab.txt',
|
|
|
|
"Filepath of vocabulary.")
|
|
|
|
add_arg('output_model_dir', str,
|
|
|
|
"./checkpoints/libri",
|
|
|
|
"Directory for saving checkpoints.")
|
|
|
|
add_arg('augment_conf_path',str,
|
|
|
|
'conf/augmentation.config',
|
|
|
|
"Filepath of augmentation configuration file (json-format).")
|
|
|
|
add_arg('specgram_type', str,
|
|
|
|
'linear',
|
|
|
|
"Audio feature type. Options: linear, mfcc.",
|
|
|
|
choices=['linear', 'mfcc'])
|
|
|
|
add_arg('shuffle_method', str,
|
|
|
|
'batch_shuffle_clipped',
|
|
|
|
"Shuffle method.",
|
|
|
|
choices=['instance_shuffle', 'batch_shuffle', 'batch_shuffle_clipped'])
|
|
|
|
# yapf: disable
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
"""DeepSpeech2 training."""
|
|
|
|
|
|
|
|
# check if set use_gpu=True in paddlepaddle cpu version
|
|
|
|
check_cuda(args.use_gpu)
|
|
|
|
# check if paddlepaddle version is satisfied
|
|
|
|
check_version()
|
|
|
|
|
|
|
|
if args.use_gpu:
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
|
|
else:
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
|
|
|
train_generator = DataGenerator(
|
|
|
|
vocab_filepath=args.vocab_path,
|
|
|
|
mean_std_filepath=args.mean_std_path,
|
|
|
|
augmentation_config=io.open(args.augment_conf_path, mode='r', encoding='utf8').read(),
|
|
|
|
max_duration=args.max_duration,
|
|
|
|
min_duration=args.min_duration,
|
|
|
|
specgram_type=args.specgram_type,
|
|
|
|
place=place)
|
|
|
|
dev_generator = DataGenerator(
|
|
|
|
vocab_filepath=args.vocab_path,
|
|
|
|
mean_std_filepath=args.mean_std_path,
|
|
|
|
augmentation_config="{}",
|
|
|
|
specgram_type=args.specgram_type,
|
|
|
|
place = place)
|
|
|
|
train_batch_reader = train_generator.batch_reader_creator(
|
|
|
|
manifest_path=args.train_manifest,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
sortagrad=args.use_sortagrad if args.init_from_pretrained_model is None else False,
|
|
|
|
shuffle_method=args.shuffle_method)
|
|
|
|
dev_batch_reader = dev_generator.batch_reader_creator(
|
|
|
|
manifest_path=args.dev_manifest,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
sortagrad=False,
|
|
|
|
shuffle_method=None)
|
|
|
|
|
|
|
|
ds2_model = DeepSpeech2Model(
|
|
|
|
vocab_size=train_generator.vocab_size,
|
|
|
|
num_conv_layers=args.num_conv_layers,
|
|
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
|
|
rnn_layer_size=args.rnn_layer_size,
|
|
|
|
use_gru=args.use_gru,
|
|
|
|
share_rnn_weights=args.share_rnn_weights,
|
|
|
|
place=place,
|
|
|
|
init_from_pretrained_model=args.init_from_pretrained_model,
|
|
|
|
output_model_dir=args.output_model_dir)
|
|
|
|
|
|
|
|
ds2_model.train(
|
|
|
|
train_batch_reader=train_batch_reader,
|
|
|
|
dev_batch_reader=dev_batch_reader,
|
|
|
|
feeding_dict=train_generator.feeding,
|
|
|
|
learning_rate=args.learning_rate,
|
|
|
|
gradient_clipping=400,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
num_samples=args.num_samples,
|
|
|
|
num_epoch=args.num_epoch,
|
|
|
|
save_epoch=args.save_epoch,
|
|
|
|
num_iterations_print=args.num_iter_print,
|
|
|
|
test_off=args.test_off)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
print_arguments(args)
|
|
|
|
train()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|