|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Calculates Diarization Error Rate (DER) which is the sum of Missed Speaker (MS),
|
|
|
|
False Alarm (FA), and Speaker Error Rate (SER) using md-eval-22.pl from NIST RT Evaluation.
|
|
|
|
|
|
|
|
Authors
|
|
|
|
* Neville Ryant 2018
|
|
|
|
* Nauman Dawalatabad 2020
|
|
|
|
* qingenz123@126.com (Qingen ZHAO) 2022
|
|
|
|
|
|
|
|
Credits
|
|
|
|
This code is adapted from https://github.com/nryant/dscore
|
|
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
import re
|
|
|
|
import subprocess
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from paddlespeech.utils.argparse import strtobool
|
|
|
|
|
|
|
|
FILE_IDS = re.compile(r"(?<=Speaker Diarization for).+(?=\*\*\*)")
|
|
|
|
SCORED_SPEAKER_TIME = re.compile(r"(?<=SCORED SPEAKER TIME =)[\d.]+")
|
|
|
|
MISS_SPEAKER_TIME = re.compile(r"(?<=MISSED SPEAKER TIME =)[\d.]+")
|
|
|
|
FA_SPEAKER_TIME = re.compile(r"(?<=FALARM SPEAKER TIME =)[\d.]+")
|
|
|
|
ERROR_SPEAKER_TIME = re.compile(r"(?<=SPEAKER ERROR TIME =)[\d.]+")
|
|
|
|
|
|
|
|
|
|
|
|
def rectify(arr):
|
|
|
|
"""Corrects corner cases and converts scores into percentage.
|
|
|
|
"""
|
|
|
|
# Numerator and denominator both 0.
|
|
|
|
arr[np.isnan(arr)] = 0
|
|
|
|
|
|
|
|
# Numerator > 0, but denominator = 0.
|
|
|
|
arr[np.isinf(arr)] = 1
|
|
|
|
arr *= 100.0
|
|
|
|
|
|
|
|
return arr
|
|
|
|
|
|
|
|
|
|
|
|
def DER(
|
|
|
|
ref_rttm,
|
|
|
|
sys_rttm,
|
|
|
|
ignore_overlap=False,
|
|
|
|
collar=0.25,
|
|
|
|
individual_file_scores=False, ):
|
|
|
|
"""Computes Missed Speaker percentage (MS), False Alarm (FA),
|
|
|
|
Speaker Error Rate (SER), and Diarization Error Rate (DER).
|
|
|
|
|
|
|
|
Arguments
|
|
|
|
---------
|
|
|
|
ref_rttm : str
|
|
|
|
The path of reference/groundtruth RTTM file.
|
|
|
|
sys_rttm : str
|
|
|
|
The path of the system generated RTTM file.
|
|
|
|
individual_file : bool
|
|
|
|
If True, returns scores for each file in order.
|
|
|
|
collar : float
|
|
|
|
Forgiveness collar.
|
|
|
|
ignore_overlap : bool
|
|
|
|
If True, ignores overlapping speech during evaluation.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
MS : float array
|
|
|
|
Missed Speech.
|
|
|
|
FA : float array
|
|
|
|
False Alarms.
|
|
|
|
SER : float array
|
|
|
|
Speaker Error Rates.
|
|
|
|
DER : float array
|
|
|
|
Diarization Error Rates.
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import pytest
|
|
|
|
>>> pytest.skip('Skipping because of Perl dependency')
|
|
|
|
>>> ref_rttm = "../../samples/rttm_samples/ref_rttm/ES2014c.rttm"
|
|
|
|
>>> sys_rttm = "../../samples/rttm_samples/sys_rttm/ES2014c.rttm"
|
|
|
|
>>> ignore_overlap = True
|
|
|
|
>>> collar = 0.25
|
|
|
|
>>> individual_file_scores = True
|
|
|
|
>>> Scores = DER(ref_rttm, sys_rttm, ignore_overlap, collar, individual_file_scores)
|
|
|
|
>>> print (Scores)
|
|
|
|
(array([0., 0.]), array([0., 0.]), array([7.16923618, 7.16923618]), array([7.16923618, 7.16923618]))
|
|
|
|
"""
|
|
|
|
|
|
|
|
curr = os.path.abspath(os.path.dirname(__file__))
|
|
|
|
mdEval = os.path.join(curr, "./md-eval.pl")
|
|
|
|
|
|
|
|
cmd = [
|
|
|
|
mdEval,
|
|
|
|
"-af",
|
|
|
|
"-r",
|
|
|
|
ref_rttm,
|
|
|
|
"-s",
|
|
|
|
sys_rttm,
|
|
|
|
"-c",
|
|
|
|
str(collar),
|
|
|
|
]
|
|
|
|
if ignore_overlap:
|
|
|
|
cmd.append("-1")
|
|
|
|
|
|
|
|
try:
|
|
|
|
stdout = subprocess.check_output(cmd, stderr=subprocess.STDOUT)
|
|
|
|
|
|
|
|
except subprocess.CalledProcessError as ex:
|
|
|
|
stdout = ex.output
|
|
|
|
|
|
|
|
else:
|
|
|
|
stdout = stdout.decode("utf-8")
|
|
|
|
|
|
|
|
# Get all recording IDs
|
|
|
|
file_ids = [m.strip() for m in FILE_IDS.findall(stdout)]
|
|
|
|
file_ids = [
|
|
|
|
file_id[2:] if file_id.startswith("f=") else file_id
|
|
|
|
for file_id in file_ids
|
|
|
|
]
|
|
|
|
|
|
|
|
scored_speaker_times = np.array(
|
|
|
|
[float(m) for m in SCORED_SPEAKER_TIME.findall(stdout)])
|
|
|
|
|
|
|
|
miss_speaker_times = np.array(
|
|
|
|
[float(m) for m in MISS_SPEAKER_TIME.findall(stdout)])
|
|
|
|
|
|
|
|
fa_speaker_times = np.array(
|
|
|
|
[float(m) for m in FA_SPEAKER_TIME.findall(stdout)])
|
|
|
|
|
|
|
|
error_speaker_times = np.array(
|
|
|
|
[float(m) for m in ERROR_SPEAKER_TIME.findall(stdout)])
|
|
|
|
|
|
|
|
with np.errstate(invalid="ignore", divide="ignore"):
|
|
|
|
tot_error_times = (
|
|
|
|
miss_speaker_times + fa_speaker_times + error_speaker_times)
|
|
|
|
miss_speaker_frac = miss_speaker_times / scored_speaker_times
|
|
|
|
fa_speaker_frac = fa_speaker_times / scored_speaker_times
|
|
|
|
sers_frac = error_speaker_times / scored_speaker_times
|
|
|
|
ders_frac = tot_error_times / scored_speaker_times
|
|
|
|
|
|
|
|
# Values in percentage of scored_speaker_time
|
|
|
|
miss_speaker = rectify(miss_speaker_frac)
|
|
|
|
fa_speaker = rectify(fa_speaker_frac)
|
|
|
|
sers = rectify(sers_frac)
|
|
|
|
ders = rectify(ders_frac)
|
|
|
|
|
|
|
|
if individual_file_scores:
|
|
|
|
return miss_speaker, fa_speaker, sers, ders
|
|
|
|
else:
|
|
|
|
return miss_speaker[-1], fa_speaker[-1], sers[-1], ders[-1]
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description='Compute Diarization Error Rate')
|
|
|
|
parser.add_argument(
|
|
|
|
'--ref_rttm',
|
|
|
|
required=True,
|
|
|
|
help='the path of reference/groundtruth RTTM file')
|
|
|
|
parser.add_argument(
|
|
|
|
'--sys_rttm',
|
|
|
|
required=True,
|
|
|
|
help='the path of the system generated RTTM file')
|
|
|
|
parser.add_argument(
|
|
|
|
'--individual_file',
|
|
|
|
default=False,
|
|
|
|
type=strtobool,
|
|
|
|
help='if True, returns scores for each file in order')
|
|
|
|
parser.add_argument(
|
|
|
|
'--collar', default=0.25, type=float, help='forgiveness collar')
|
|
|
|
parser.add_argument(
|
|
|
|
'--ignore_overlap',
|
|
|
|
default=False,
|
|
|
|
type=strtobool,
|
|
|
|
help='if True, ignores overlapping speech during evaluation')
|
|
|
|
args = parser.parse_args()
|
|
|
|
print(args)
|
|
|
|
|
|
|
|
der = DER(args.ref_rttm, args.sys_rttm)
|
|
|
|
print("miss_speaker: %.3f%% fa_speaker: %.3f%% sers: %.3f%% ders: %.3f%%" %
|
|
|
|
(der[0], der[1], der[2], der[-1]))
|