# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Calculates Diarization Error Rate (DER) which is the sum of Missed Speaker (MS), False Alarm (FA), and Speaker Error Rate (SER) using md-eval-22.pl from NIST RT Evaluation. Authors * Neville Ryant 2018 * Nauman Dawalatabad 2020 * qingenz123@126.com (Qingen ZHAO) 2022 Credits This code is adapted from https://github.com/nryant/dscore """ import argparse import os import re import subprocess import numpy as np from paddlespeech.utils.argparse import strtobool FILE_IDS = re.compile(r"(?<=Speaker Diarization for).+(?=\*\*\*)") SCORED_SPEAKER_TIME = re.compile(r"(?<=SCORED SPEAKER TIME =)[\d.]+") MISS_SPEAKER_TIME = re.compile(r"(?<=MISSED SPEAKER TIME =)[\d.]+") FA_SPEAKER_TIME = re.compile(r"(?<=FALARM SPEAKER TIME =)[\d.]+") ERROR_SPEAKER_TIME = re.compile(r"(?<=SPEAKER ERROR TIME =)[\d.]+") def rectify(arr): """Corrects corner cases and converts scores into percentage. """ # Numerator and denominator both 0. arr[np.isnan(arr)] = 0 # Numerator > 0, but denominator = 0. arr[np.isinf(arr)] = 1 arr *= 100.0 return arr def DER( ref_rttm, sys_rttm, ignore_overlap=False, collar=0.25, individual_file_scores=False, ): """Computes Missed Speaker percentage (MS), False Alarm (FA), Speaker Error Rate (SER), and Diarization Error Rate (DER). Arguments --------- ref_rttm : str The path of reference/groundtruth RTTM file. sys_rttm : str The path of the system generated RTTM file. individual_file : bool If True, returns scores for each file in order. collar : float Forgiveness collar. ignore_overlap : bool If True, ignores overlapping speech during evaluation. Returns ------- MS : float array Missed Speech. FA : float array False Alarms. SER : float array Speaker Error Rates. DER : float array Diarization Error Rates. Example ------- >>> import pytest >>> pytest.skip('Skipping because of Perl dependency') >>> ref_rttm = "../../samples/rttm_samples/ref_rttm/ES2014c.rttm" >>> sys_rttm = "../../samples/rttm_samples/sys_rttm/ES2014c.rttm" >>> ignore_overlap = True >>> collar = 0.25 >>> individual_file_scores = True >>> Scores = DER(ref_rttm, sys_rttm, ignore_overlap, collar, individual_file_scores) >>> print (Scores) (array([0., 0.]), array([0., 0.]), array([7.16923618, 7.16923618]), array([7.16923618, 7.16923618])) """ curr = os.path.abspath(os.path.dirname(__file__)) mdEval = os.path.join(curr, "./md-eval.pl") cmd = [ mdEval, "-af", "-r", ref_rttm, "-s", sys_rttm, "-c", str(collar), ] if ignore_overlap: cmd.append("-1") try: stdout = subprocess.check_output(cmd, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as ex: stdout = ex.output else: stdout = stdout.decode("utf-8") # Get all recording IDs file_ids = [m.strip() for m in FILE_IDS.findall(stdout)] file_ids = [ file_id[2:] if file_id.startswith("f=") else file_id for file_id in file_ids ] scored_speaker_times = np.array( [float(m) for m in SCORED_SPEAKER_TIME.findall(stdout)]) miss_speaker_times = np.array( [float(m) for m in MISS_SPEAKER_TIME.findall(stdout)]) fa_speaker_times = np.array( [float(m) for m in FA_SPEAKER_TIME.findall(stdout)]) error_speaker_times = np.array( [float(m) for m in ERROR_SPEAKER_TIME.findall(stdout)]) with np.errstate(invalid="ignore", divide="ignore"): tot_error_times = ( miss_speaker_times + fa_speaker_times + error_speaker_times) miss_speaker_frac = miss_speaker_times / scored_speaker_times fa_speaker_frac = fa_speaker_times / scored_speaker_times sers_frac = error_speaker_times / scored_speaker_times ders_frac = tot_error_times / scored_speaker_times # Values in percentage of scored_speaker_time miss_speaker = rectify(miss_speaker_frac) fa_speaker = rectify(fa_speaker_frac) sers = rectify(sers_frac) ders = rectify(ders_frac) if individual_file_scores: return miss_speaker, fa_speaker, sers, ders else: return miss_speaker[-1], fa_speaker[-1], sers[-1], ders[-1] if __name__ == '__main__': parser = argparse.ArgumentParser( description='Compute Diarization Error Rate') parser.add_argument( '--ref_rttm', required=True, help='the path of reference/groundtruth RTTM file') parser.add_argument( '--sys_rttm', required=True, help='the path of the system generated RTTM file') parser.add_argument( '--individual_file', default=False, type=strtobool, help='if True, returns scores for each file in order') parser.add_argument( '--collar', default=0.25, type=float, help='forgiveness collar') parser.add_argument( '--ignore_overlap', default=False, type=strtobool, help='if True, ignores overlapping speech during evaluation') args = parser.parse_args() print(args) der = DER(args.ref_rttm, args.sys_rttm) print("miss_speaker: %.3f%% fa_speaker: %.3f%% sers: %.3f%% ders: %.3f%%" % (der[0], der[1], der[2], der[-1]))