|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Prepare Aishell mandarin dataset
|
|
|
|
|
|
|
|
Download, unpack and create manifest files.
|
|
|
|
Manifest file is a json-format file with each line containing the
|
|
|
|
meta data (i.e. audio filepath, transcript and audio duration)
|
|
|
|
of each audio file in the data set.
|
|
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import codecs
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import soundfile
|
|
|
|
|
|
|
|
from paddlespeech.dataset.download import download
|
|
|
|
from paddlespeech.dataset.download import unpack
|
|
|
|
from paddlespeech.utils.argparse import print_arguments
|
|
|
|
|
|
|
|
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
|
|
|
|
|
|
|
|
URL_ROOT = 'http://openslr.elda.org/resources/33'
|
|
|
|
# URL_ROOT = 'https://openslr.magicdatatech.com/resources/33'
|
|
|
|
DATA_URL = URL_ROOT + '/data_aishell.tgz'
|
|
|
|
MD5_DATA = '2f494334227864a8a8fec932999db9d8'
|
|
|
|
RESOURCE_URL = URL_ROOT + '/resource_aishell.tgz'
|
|
|
|
MD5_RESOURCE = '957d480a0fcac85fc18e550756f624e5'
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
|
|
parser.add_argument(
|
|
|
|
"--target_dir",
|
|
|
|
default=DATA_HOME + "/Aishell",
|
|
|
|
type=str,
|
|
|
|
help="Directory to save the dataset. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--manifest_prefix",
|
|
|
|
default="manifest",
|
|
|
|
type=str,
|
|
|
|
help="Filepath prefix for output manifests. (default: %(default)s)")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def create_manifest(data_dir, manifest_path_prefix):
|
|
|
|
print("Creating manifest %s ..." % os.path.join(data_dir,
|
|
|
|
manifest_path_prefix))
|
|
|
|
json_lines = []
|
|
|
|
transcript_path = os.path.join(data_dir, 'transcript',
|
|
|
|
'aishell_transcript_v0.8.txt')
|
|
|
|
transcript_dict = {}
|
|
|
|
for line in codecs.open(transcript_path, 'r', 'utf-8'):
|
|
|
|
line = line.strip()
|
|
|
|
if line == '':
|
|
|
|
continue
|
|
|
|
audio_id, text = line.split(' ', 1)
|
|
|
|
# remove withespace, charactor text
|
|
|
|
text = ''.join(text.split())
|
|
|
|
transcript_dict[audio_id] = text
|
|
|
|
|
|
|
|
data_metas = dict()
|
|
|
|
data_types = ['train', 'dev', 'test']
|
|
|
|
for dtype in data_types:
|
|
|
|
del json_lines[:]
|
|
|
|
total_sec = 0.0
|
|
|
|
total_text = 0.0
|
|
|
|
total_num = 0
|
|
|
|
|
|
|
|
audio_dir = os.path.join(data_dir, 'wav', dtype)
|
|
|
|
for subfolder, _, filelist in sorted(os.walk(audio_dir)):
|
|
|
|
for fname in filelist:
|
|
|
|
audio_path = os.path.abspath(os.path.join(subfolder, fname))
|
|
|
|
audio_id = os.path.basename(fname)[:-4]
|
|
|
|
# if no transcription for audio then skipped
|
|
|
|
if audio_id not in transcript_dict:
|
|
|
|
continue
|
|
|
|
|
|
|
|
utt2spk = Path(audio_path).parent.name
|
|
|
|
audio_data, samplerate = soundfile.read(audio_path)
|
|
|
|
duration = float(len(audio_data) / samplerate)
|
|
|
|
text = transcript_dict[audio_id]
|
|
|
|
json_lines.append(
|
|
|
|
json.dumps(
|
|
|
|
{
|
|
|
|
'utt': audio_id,
|
|
|
|
'utt2spk': str(utt2spk),
|
|
|
|
'feat': audio_path,
|
|
|
|
'feat_shape': (duration, ), # second
|
|
|
|
'text': text
|
|
|
|
},
|
|
|
|
ensure_ascii=False))
|
|
|
|
|
|
|
|
total_sec += duration
|
|
|
|
total_text += len(text)
|
|
|
|
total_num += 1
|
|
|
|
|
|
|
|
manifest_path = manifest_path_prefix + '.' + dtype
|
|
|
|
with codecs.open(manifest_path, 'w', 'utf-8') as fout:
|
|
|
|
for line in json_lines:
|
|
|
|
fout.write(line + '\n')
|
|
|
|
|
|
|
|
meta = dict()
|
|
|
|
meta["dtype"] = dtype # train, dev, test
|
|
|
|
meta["utts"] = total_num
|
|
|
|
meta["hours"] = total_sec / (60 * 60)
|
|
|
|
meta["text"] = total_text
|
|
|
|
meta["text/sec"] = total_text / total_sec
|
|
|
|
meta["sec/utt"] = total_sec / total_num
|
|
|
|
data_metas[dtype] = meta
|
|
|
|
|
|
|
|
manifest_dir = os.path.dirname(manifest_path_prefix)
|
|
|
|
meta_path = os.path.join(manifest_dir, dtype) + '.meta'
|
|
|
|
with open(meta_path, 'w') as f:
|
|
|
|
for key, val in meta.items():
|
|
|
|
print(f"{key}: {val}", file=f)
|
|
|
|
|
|
|
|
return data_metas
|
|
|
|
|
|
|
|
|
|
|
|
def download_dataset(url, md5sum, target_dir):
|
|
|
|
"""Download, unpack and create manifest file."""
|
|
|
|
data_dir = os.path.join(target_dir, 'data_aishell')
|
|
|
|
if not os.path.exists(data_dir):
|
|
|
|
filepath = download(url, md5sum, target_dir)
|
|
|
|
unpack(filepath, target_dir)
|
|
|
|
# unpack all audio tar files
|
|
|
|
audio_dir = os.path.join(data_dir, 'wav')
|
|
|
|
for subfolder, _, filelist in sorted(os.walk(audio_dir)):
|
|
|
|
for ftar in filelist:
|
|
|
|
unpack(os.path.join(subfolder, ftar), subfolder, True)
|
|
|
|
else:
|
|
|
|
print("Skip downloading and unpacking. Data already exists in %s." %
|
|
|
|
os.path.abspath(target_dir))
|
|
|
|
return os.path.abspath(data_dir)
|
|
|
|
|
|
|
|
|
|
|
|
def check_dataset(data_dir):
|
|
|
|
print(f"check dataset {os.path.abspath(data_dir)} ...")
|
|
|
|
|
|
|
|
transcript_path = os.path.join(data_dir, 'transcript',
|
|
|
|
'aishell_transcript_v0.8.txt')
|
|
|
|
if not os.path.exists(transcript_path):
|
|
|
|
raise FileNotFoundError(f"no transcript file found in {data_dir}.")
|
|
|
|
|
|
|
|
transcript_dict = {}
|
|
|
|
for line in codecs.open(transcript_path, 'r', 'utf-8'):
|
|
|
|
line = line.strip()
|
|
|
|
if line == '':
|
|
|
|
continue
|
|
|
|
audio_id, text = line.split(' ', 1)
|
|
|
|
# remove withespace, charactor text
|
|
|
|
text = ''.join(text.split())
|
|
|
|
transcript_dict[audio_id] = text
|
|
|
|
|
|
|
|
no_label = 0
|
|
|
|
data_types = ['train', 'dev', 'test']
|
|
|
|
for dtype in data_types:
|
|
|
|
audio_dir = os.path.join(data_dir, 'wav', dtype)
|
|
|
|
if not os.path.exists(audio_dir):
|
|
|
|
raise IOError(f"{audio_dir} does not exist.")
|
|
|
|
|
|
|
|
for subfolder, _, filelist in sorted(os.walk(audio_dir)):
|
|
|
|
for fname in filelist:
|
|
|
|
audio_path = os.path.abspath(os.path.join(subfolder, fname))
|
|
|
|
audio_id = os.path.basename(fname)[:-4]
|
|
|
|
# if no transcription for audio then skipped
|
|
|
|
if audio_id not in transcript_dict:
|
|
|
|
print(f"Warning: {audio_id} not has transcript.")
|
|
|
|
no_label += 1
|
|
|
|
continue
|
|
|
|
|
|
|
|
utt2spk = Path(audio_path).parent.name
|
|
|
|
audio_data, samplerate = soundfile.read(audio_path)
|
|
|
|
assert samplerate == 16000, f"{audio_path} sample rate is {samplerate} not 16k, please check."
|
|
|
|
|
|
|
|
print(f"Warning: {dtype} has {no_label} audio does not has transcript.")
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_dataset(url, md5sum, target_dir, manifest_path=None, check=False):
|
|
|
|
"""Download, unpack and create manifest file."""
|
|
|
|
data_dir = download_dataset(url, md5sum, target_dir)
|
|
|
|
|
|
|
|
if check:
|
|
|
|
try:
|
|
|
|
check_dataset(data_dir)
|
|
|
|
except Exception as e:
|
|
|
|
raise ValueError(
|
|
|
|
f"{data_dir} dataset format not right, please check it.")
|
|
|
|
|
|
|
|
meta = None
|
|
|
|
if manifest_path:
|
|
|
|
meta = create_manifest(data_dir, manifest_path)
|
|
|
|
|
|
|
|
return data_dir, meta
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
print_arguments(args, globals())
|
|
|
|
if args.target_dir.startswith('~'):
|
|
|
|
args.target_dir = os.path.expanduser(args.target_dir)
|
|
|
|
|
|
|
|
data_dir, meta = prepare_dataset(
|
|
|
|
url=DATA_URL,
|
|
|
|
md5sum=MD5_DATA,
|
|
|
|
target_dir=args.target_dir,
|
|
|
|
manifest_path=args.manifest_prefix,
|
|
|
|
check=True)
|
|
|
|
|
|
|
|
resource_dir, _ = prepare_dataset(
|
|
|
|
url=RESOURCE_URL,
|
|
|
|
md5sum=MD5_RESOURCE,
|
|
|
|
target_dir=args.target_dir,
|
|
|
|
manifest_path=None)
|
|
|
|
|
|
|
|
print("Data download and manifest prepare done!")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|