[s2t] move s2t data preprocess into paddlespeech.dataset (#3189)

* move s2t data preprocess into paddlespeech.dataset

* avg model, compute wer, format rsl into paddlespeech.dataset

* fix format rsl

* fix avg ckpts
pull/3193/head
Hui Zhang 2 years ago committed by GitHub
parent 8c7859d3bc
commit df3be4acae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,15 +1,21 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
set -e
stage=0
stop_stage=100
source utils/parse_options.sh || exit 1;
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
config_path=$1
decode_config_path=$2
ckpt_prefix=$3
@ -92,6 +98,7 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
fi
if [ ${stage} -le 101 ] && [ ${stop_stage} -ge 101 ]; then
echo "using sclite to compute cer..."
# format the reference test file for sclite
python utils/format_rsl.py \
--origin_ref data/manifest.test.raw \

@ -28,6 +28,7 @@ import soundfile
from paddlespeech.dataset.download import download
from paddlespeech.dataset.download import unpack
from paddlespeech.utils.argparse import print_arguments
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
@ -139,7 +140,7 @@ def prepare_dataset(url, md5sum, target_dir, manifest_path, subset):
def main():
print(f"args: {args}")
print_arguments(args, globals())
if args.target_dir.startswith('~'):
args.target_dir = os.path.expanduser(args.target_dir)

@ -28,6 +28,7 @@ import soundfile
from paddlespeech.dataset.download import download
from paddlespeech.dataset.download import unpack
from paddlespeech.utils.argparse import print_arguments
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
@ -205,7 +206,7 @@ def prepare_dataset(url, md5sum, target_dir, manifest_path=None, check=False):
def main():
print(f"args: {args}")
print_arguments(args, globals())
if args.target_dir.startswith('~'):
args.target_dir = os.path.expanduser(args.target_dir)

@ -0,0 +1,20 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# s2t utils binaries.
from .avg_model import main as avg_ckpts_main
from .build_vocab import main as build_vocab_main
from .compute_mean_std import main as compute_mean_std_main
from .compute_wer import main as compute_wer_main
from .format_data import main as format_data_main
from .format_rsl import main as format_rsl_main

@ -0,0 +1,125 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import json
import os
import numpy as np
import paddle
def define_argparse():
parser = argparse.ArgumentParser(description='average model')
parser.add_argument('--dst_model', required=True, help='averaged model')
parser.add_argument(
'--ckpt_dir', required=True, help='ckpt model dir for average')
parser.add_argument(
'--val_best', action="store_true", help='averaged model')
parser.add_argument(
'--num', default=5, type=int, help='nums for averaged model')
parser.add_argument(
'--min_epoch',
default=0,
type=int,
help='min epoch used for averaging model')
parser.add_argument(
'--max_epoch',
default=65536, # Big enough
type=int,
help='max epoch used for averaging model')
args = parser.parse_args()
return args
def average_checkpoints(dst_model="",
ckpt_dir="",
val_best=True,
num=5,
min_epoch=0,
max_epoch=65536):
paddle.set_device('cpu')
val_scores = []
jsons = glob.glob(f'{ckpt_dir}/[!train]*.json')
jsons = sorted(jsons, key=os.path.getmtime, reverse=True)
for y in jsons:
with open(y, 'r') as f:
dic_json = json.load(f)
loss = dic_json['val_loss']
epoch = dic_json['epoch']
if epoch >= min_epoch and epoch <= max_epoch:
val_scores.append((epoch, loss))
assert val_scores, f"Not find any valid checkpoints: {val_scores}"
val_scores = np.array(val_scores)
if val_best:
sort_idx = np.argsort(val_scores[:, 1])
sorted_val_scores = val_scores[sort_idx]
else:
sorted_val_scores = val_scores
beat_val_scores = sorted_val_scores[:num, 1]
selected_epochs = sorted_val_scores[:num, 0].astype(np.int64)
avg_val_score = np.mean(beat_val_scores)
print("selected val scores = " + str(beat_val_scores))
print("selected epochs = " + str(selected_epochs))
print("averaged val score = " + str(avg_val_score))
path_list = [
ckpt_dir + '/{}.pdparams'.format(int(epoch))
for epoch in sorted_val_scores[:num, 0]
]
print(path_list)
avg = None
num = args.num
assert num == len(path_list)
for path in path_list:
print(f'Processing {path}')
states = paddle.load(path)
if avg is None:
avg = states
else:
for k in avg.keys():
avg[k] += states[k]
# average
for k in avg.keys():
if avg[k] is not None:
avg[k] /= num
paddle.save(avg, args.dst_model)
print(f'Saving to {args.dst_model}')
meta_path = os.path.splitext(args.dst_model)[0] + '.avg.json'
with open(meta_path, 'w') as f:
data = json.dumps({
"mode": 'val_best' if args.val_best else 'latest',
"avg_ckpt": args.dst_model,
"val_loss_mean": avg_val_score,
"ckpts": path_list,
"epochs": selected_epochs.tolist(),
"val_losses": beat_val_scores.tolist(),
})
f.write(data + "\n")
def main():
args = define_argparse()
average_checkpoints(args)
if __name__ == '__main__':
main()

@ -0,0 +1,166 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Build vocabulary from manifest files.
Each item in vocabulary file is a character.
"""
import argparse
import functools
import os
import tempfile
from collections import Counter
import jsonlines
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.frontend.utility import BLANK
from paddlespeech.s2t.frontend.utility import SOS
from paddlespeech.s2t.frontend.utility import SPACE
from paddlespeech.s2t.frontend.utility import UNK
from paddlespeech.utils.argparse import add_arguments
from paddlespeech.utils.argparse import print_arguments
def count_manifest(counter, text_feature, manifest_path):
manifest_jsons = []
with jsonlines.open(manifest_path, 'r') as reader:
for json_data in reader:
manifest_jsons.append(json_data)
for line_json in manifest_jsons:
if isinstance(line_json['text'], str):
tokens = text_feature.tokenize(
line_json['text'], replace_space=False)
counter.update(tokens)
else:
assert isinstance(line_json['text'], list)
for text in line_json['text']:
tokens = text_feature.tokenize(text, replace_space=False)
counter.update(tokens)
def dump_text_manifest(fileobj, manifest_path, key='text'):
manifest_jsons = []
with jsonlines.open(manifest_path, 'r') as reader:
for json_data in reader:
manifest_jsons.append(json_data)
for line_json in manifest_jsons:
if isinstance(line_json[key], str):
fileobj.write(line_json[key] + "\n")
else:
assert isinstance(line_json[key], list)
for line in line_json[key]:
fileobj.write(line + "\n")
def build_vocab(manifest_paths="",
vocab_path="examples/librispeech/data/vocab.txt",
unit_type="char",
count_threshold=0,
text_keys='text',
spm_mode="unigram",
spm_vocab_size=0,
spm_model_prefix="",
spm_character_coverage=0.9995):
fout = open(vocab_path, 'w', encoding='utf-8')
fout.write(BLANK + "\n") # 0 will be used for "blank" in CTC
fout.write(UNK + '\n') # <unk> must be 1
if unit_type == 'spm':
# tools/spm_train --input=$wave_data/lang_char/input.txt
# --vocab_size=${nbpe} --model_type=${bpemode}
# --model_prefix=${bpemodel} --input_sentence_size=100000000
import sentencepiece as spm
fp = tempfile.NamedTemporaryFile(mode='w', delete=False)
for manifest_path in manifest_paths:
_text_keys = [text_keys] if type(
text_keys) is not list else text_keys
for text_key in _text_keys:
dump_text_manifest(fp, manifest_path, key=text_key)
fp.close()
# train
spm.SentencePieceTrainer.Train(
input=fp.name,
vocab_size=spm_vocab_size,
model_type=spm_mode,
model_prefix=spm_model_prefix,
input_sentence_size=100000000,
character_coverage=spm_character_coverage)
os.unlink(fp.name)
# encode
text_feature = TextFeaturizer(unit_type, "", spm_model_prefix)
counter = Counter()
for manifest_path in manifest_paths:
count_manifest(counter, text_feature, manifest_path)
count_sorted = sorted(counter.items(), key=lambda x: x[1], reverse=True)
tokens = []
for token, count in count_sorted:
if count < count_threshold:
break
# replace space by `<space>`
token = SPACE if token == ' ' else token
tokens.append(token)
tokens = sorted(tokens)
for token in tokens:
fout.write(token + '\n')
fout.write(SOS + "\n") # <sos/eos>
fout.close()
def define_argparse():
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('unit_type', str, "char", "Unit type, e.g. char, word, spm")
add_arg('count_threshold', int, 0,
"Truncation threshold for char/word counts.Default 0, no truncate.")
add_arg('vocab_path', str,
'examples/librispeech/data/vocab.txt',
"Filepath to write the vocabulary.")
add_arg('manifest_paths', str,
None,
"Filepaths of manifests for building vocabulary. "
"You can provide multiple manifest files.",
nargs='+',
required=True)
add_arg('text_keys', str,
'text',
"keys of the text in manifest for building vocabulary. "
"You can provide multiple k.",
nargs='+')
# bpe
add_arg('spm_vocab_size', int, 0, "Vocab size for spm.")
add_arg('spm_mode', str, 'unigram', "spm model type, e.g. unigram, spm, char, word. only need when `unit_type` is spm")
add_arg('spm_model_prefix', str, "", "spm_model_%(spm_mode)_%(count_threshold), spm model prefix, only need when `unit_type` is spm")
add_arg('spm_character_coverage', float, 0.9995, "character coverage to determine the minimum symbols")
# yapf: disable
args = parser.parse_args()
return args
def main():
args = define_argparse()
print_arguments(args, globals())
build_vocab(**vars(args))
if __name__ == '__main__':
main()

@ -0,0 +1,106 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Compute mean and std for feature normalizer, and save to file."""
import argparse
import functools
from paddlespeech.s2t.frontend.augmentor.augmentation import AugmentationPipeline
from paddlespeech.s2t.frontend.featurizer.audio_featurizer import AudioFeaturizer
from paddlespeech.s2t.frontend.normalizer import FeatureNormalizer
from paddlespeech.utils.argparse import add_arguments
from paddlespeech.utils.argparse import print_arguments
def compute_cmvn(manifest_path="data/librispeech/manifest.train",
output_path="data/librispeech/mean_std.npz",
num_samples=2000,
num_workers=0,
spectrum_type="linear",
feat_dim=13,
delta_delta=False,
stride_ms=10,
window_ms=20,
sample_rate=16000,
use_dB_normalization=True,
target_dB=-20):
augmentation_pipeline = AugmentationPipeline('{}')
audio_featurizer = AudioFeaturizer(
spectrum_type=spectrum_type,
feat_dim=feat_dim,
delta_delta=delta_delta,
stride_ms=float(stride_ms),
window_ms=float(window_ms),
n_fft=None,
max_freq=None,
target_sample_rate=sample_rate,
use_dB_normalization=use_dB_normalization,
target_dB=target_dB,
dither=0.0)
def augment_and_featurize(audio_segment):
augmentation_pipeline.transform_audio(audio_segment)
return audio_featurizer.featurize(audio_segment)
normalizer = FeatureNormalizer(
mean_std_filepath=None,
manifest_path=manifest_path,
featurize_func=augment_and_featurize,
num_samples=num_samples,
num_workers=num_workers)
normalizer.write_to_file(output_path)
def define_argparse():
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('manifest_path', str,
'data/librispeech/manifest.train',
"Filepath of manifest to compute normalizer's mean and stddev.")
add_arg('output_path', str,
'data/librispeech/mean_std.npz',
"Filepath of write mean and stddev to (.npz).")
add_arg('num_samples', int, 2000, "# of samples to for statistics.")
add_arg('num_workers',
default=0,
type=int,
help='num of subprocess workers for processing')
add_arg('spectrum_type', str,
'linear',
"Audio feature type. Options: linear, mfcc, fbank.",
choices=['linear', 'mfcc', 'fbank'])
add_arg('feat_dim', int, 13, "Audio feature dim.")
add_arg('delta_delta', bool, False, "Audio feature with delta delta.")
add_arg('stride_ms', int, 10, "stride length in ms.")
add_arg('window_ms', int, 20, "stride length in ms.")
add_arg('sample_rate', int, 16000, "target sample rate.")
add_arg('use_dB_normalization', bool, True, "do dB normalization.")
add_arg('target_dB', int, -20, "target dB.")
# yapf: disable
args = parser.parse_args()
return args
def main():
args = define_argparse()
print_arguments(args, globals())
compute_cmvn(**vars(args))
if __name__ == '__main__':
main()

@ -0,0 +1,558 @@
# Copyright 2021 Mobvoi Inc. All Rights Reserved.
# flake8: noqa
import codecs
import re
import sys
import unicodedata
remove_tag = True
spacelist = [' ', '\t', '\r', '\n']
puncts = [
'!', ',', '?', '', '', '', '', '', '', '', '', '', '', '', '',
'', ''
]
def characterize(string):
res = []
i = 0
while i < len(string):
char = string[i]
if char in puncts:
i += 1
continue
cat1 = unicodedata.category(char)
#https://unicodebook.readthedocs.io/unicode.html#unicode-categories
if cat1 == 'Zs' or cat1 == 'Cn' or char in spacelist: # space or not assigned
i += 1
continue
if cat1 == 'Lo': # letter-other
res.append(char)
i += 1
else:
# some input looks like: <unk><noise>, we want to separate it to two words.
sep = ' '
if char == '<': sep = '>'
j = i + 1
while j < len(string):
c = string[j]
if ord(c) >= 128 or (c in spacelist) or (c == sep):
break
j += 1
if j < len(string) and string[j] == '>':
j += 1
res.append(string[i:j])
i = j
return res
def stripoff_tags(x):
if not x: return ''
chars = []
i = 0
T = len(x)
while i < T:
if x[i] == '<':
while i < T and x[i] != '>':
i += 1
i += 1
else:
chars.append(x[i])
i += 1
return ''.join(chars)
def normalize(sentence, ignore_words, cs, split=None):
""" sentence, ignore_words are both in unicode
"""
new_sentence = []
for token in sentence:
x = token
if not cs:
x = x.upper()
if x in ignore_words:
continue
if remove_tag:
x = stripoff_tags(x)
if not x:
continue
if split and x in split:
new_sentence += split[x]
else:
new_sentence.append(x)
return new_sentence
class Calculator:
def __init__(self):
self.data = {}
self.space = []
self.cost = {}
self.cost['cor'] = 0
self.cost['sub'] = 1
self.cost['del'] = 1
self.cost['ins'] = 1
def calculate(self, lab, rec):
# Initialization
lab.insert(0, '')
rec.insert(0, '')
while len(self.space) < len(lab):
self.space.append([])
for row in self.space:
for element in row:
element['dist'] = 0
element['error'] = 'non'
while len(row) < len(rec):
row.append({'dist': 0, 'error': 'non'})
for i in range(len(lab)):
self.space[i][0]['dist'] = i
self.space[i][0]['error'] = 'del'
for j in range(len(rec)):
self.space[0][j]['dist'] = j
self.space[0][j]['error'] = 'ins'
self.space[0][0]['error'] = 'non'
for token in lab:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
for token in rec:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
# Computing edit distance
for i, lab_token in enumerate(lab):
for j, rec_token in enumerate(rec):
if i == 0 or j == 0:
continue
min_dist = sys.maxsize
min_error = 'none'
dist = self.space[i - 1][j]['dist'] + self.cost['del']
error = 'del'
if dist < min_dist:
min_dist = dist
min_error = error
dist = self.space[i][j - 1]['dist'] + self.cost['ins']
error = 'ins'
if dist < min_dist:
min_dist = dist
min_error = error
if lab_token == rec_token:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['cor']
error = 'cor'
else:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['sub']
error = 'sub'
if dist < min_dist:
min_dist = dist
min_error = error
self.space[i][j]['dist'] = min_dist
self.space[i][j]['error'] = min_error
# Tracing back
result = {
'lab': [],
'rec': [],
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
i = len(lab) - 1
j = len(rec) - 1
while True:
if self.space[i][j]['error'] == 'cor': # correct
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['cor'] = self.data[lab[i]]['cor'] + 1
result['all'] = result['all'] + 1
result['cor'] = result['cor'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'sub': # substitution
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['sub'] = self.data[lab[i]]['sub'] + 1
result['all'] = result['all'] + 1
result['sub'] = result['sub'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'del': # deletion
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['del'] = self.data[lab[i]]['del'] + 1
result['all'] = result['all'] + 1
result['del'] = result['del'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, "")
i = i - 1
elif self.space[i][j]['error'] == 'ins': # insertion
if len(rec[j]) > 0:
self.data[rec[j]]['ins'] = self.data[rec[j]]['ins'] + 1
result['ins'] = result['ins'] + 1
result['lab'].insert(0, "")
result['rec'].insert(0, rec[j])
j = j - 1
elif self.space[i][j]['error'] == 'non': # starting point
break
else: # shouldn't reach here
print(
'this should not happen , i = {i} , j = {j} , error = {error}'.
format(i=i, j=j, error=self.space[i][j]['error']))
return result
def overall(self):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def cluster(self, data):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in data:
if token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def keys(self):
return list(self.data.keys())
def width(string):
return sum(1 + (unicodedata.east_asian_width(c) in "AFW") for c in string)
def default_cluster(word):
unicode_names = [unicodedata.name(char) for char in word]
for i in reversed(range(len(unicode_names))):
if unicode_names[i].startswith('DIGIT'): # 1
unicode_names[i] = 'Number' # 'DIGIT'
elif (unicode_names[i].startswith('CJK UNIFIED IDEOGRAPH') or
unicode_names[i].startswith('CJK COMPATIBILITY IDEOGRAPH')):
# 明 / 郎
unicode_names[i] = 'Mandarin' # 'CJK IDEOGRAPH'
elif (unicode_names[i].startswith('LATIN CAPITAL LETTER') or
unicode_names[i].startswith('LATIN SMALL LETTER')):
# A / a
unicode_names[i] = 'English' # 'LATIN LETTER'
elif unicode_names[i].startswith('HIRAGANA LETTER'): # は こ め
unicode_names[i] = 'Japanese' # 'GANA LETTER'
elif (unicode_names[i].startswith('AMPERSAND') or
unicode_names[i].startswith('APOSTROPHE') or
unicode_names[i].startswith('COMMERCIAL AT') or
unicode_names[i].startswith('DEGREE CELSIUS') or
unicode_names[i].startswith('EQUALS SIGN') or
unicode_names[i].startswith('FULL STOP') or
unicode_names[i].startswith('HYPHEN-MINUS') or
unicode_names[i].startswith('LOW LINE') or
unicode_names[i].startswith('NUMBER SIGN') or
unicode_names[i].startswith('PLUS SIGN') or
unicode_names[i].startswith('SEMICOLON')):
# & / ' / @ / ℃ / = / . / - / _ / # / + / ;
del unicode_names[i]
else:
return 'Other'
if len(unicode_names) == 0:
return 'Other'
if len(unicode_names) == 1:
return unicode_names[0]
for i in range(len(unicode_names) - 1):
if unicode_names[i] != unicode_names[i + 1]:
return 'Other'
return unicode_names[0]
def usage():
print(
"compute-wer.py : compute word error rate (WER) and align recognition results and references."
)
print(
" usage : python compute-wer.py [--cs={0,1}] [--cluster=foo] [--ig=ignore_file] [--char={0,1}] [--v={0,1}] [--padding-symbol={space,underline}] test.ref test.hyp > test.wer"
)
def main():
# python utils/compute-wer.py --char=1 --v=1 ref hyp > rsl.error
if len(sys.argv) == 1:
usage()
sys.exit(0)
calculator = Calculator()
cluster_file = ''
ignore_words = set()
tochar = False
verbose = 1
padding_symbol = ' '
case_sensitive = False
max_words_per_line = sys.maxsize
split = None
while len(sys.argv) > 3:
a = '--maxw='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):]
del sys.argv[1]
max_words_per_line = int(b)
continue
a = '--rt='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
remove_tag = (b == 'true') or (b != '0')
continue
a = '--cs='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
case_sensitive = (b == 'true') or (b != '0')
continue
a = '--cluster='
if sys.argv[1].startswith(a):
cluster_file = sys.argv[1][len(a):]
del sys.argv[1]
continue
a = '--splitfile='
if sys.argv[1].startswith(a):
split_file = sys.argv[1][len(a):]
del sys.argv[1]
split = dict()
with codecs.open(split_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
words = line.strip().split()
if len(words) >= 2:
split[words[0]] = words[1:]
continue
a = '--ig='
if sys.argv[1].startswith(a):
ignore_file = sys.argv[1][len(a):]
del sys.argv[1]
with codecs.open(ignore_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
line = line.strip()
if len(line) > 0:
ignore_words.add(line)
continue
a = '--char='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
tochar = (b == 'true') or (b != '0')
continue
a = '--v='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
verbose = 0
try:
verbose = int(b)
except:
if b == 'true' or b != '0':
verbose = 1
continue
a = '--padding-symbol='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
if b == 'space':
padding_symbol = ' '
elif b == 'underline':
padding_symbol = '_'
continue
if True or sys.argv[1].startswith('-'):
#ignore invalid switch
del sys.argv[1]
continue
if not case_sensitive:
ig = set([w.upper() for w in ignore_words])
ignore_words = ig
default_clusters = {}
default_words = {}
ref_file = sys.argv[1]
hyp_file = sys.argv[2]
rec_set = {}
if split and not case_sensitive:
newsplit = dict()
for w in split:
words = split[w]
for i in range(len(words)):
words[i] = words[i].upper()
newsplit[w.upper()] = words
split = newsplit
with codecs.open(hyp_file, 'r', 'utf-8') as fh:
for line in fh:
if tochar:
array = characterize(line)
else:
array = line.strip().split()
if len(array) == 0: continue
fid = array[0]
rec_set[fid] = normalize(array[1:], ignore_words, case_sensitive,
split)
# compute error rate on the interaction of reference file and hyp file
for line in open(ref_file, 'r', encoding='utf-8'):
if tochar:
array = characterize(line)
else:
array = line.rstrip('\n').split()
if len(array) == 0: continue
fid = array[0]
if fid not in rec_set:
continue
lab = normalize(array[1:], ignore_words, case_sensitive, split)
rec = rec_set[fid]
if verbose:
print('\nutt: %s' % fid)
for word in rec + lab:
if word not in default_words:
default_cluster_name = default_cluster(word)
if default_cluster_name not in default_clusters:
default_clusters[default_cluster_name] = {}
if word not in default_clusters[default_cluster_name]:
default_clusters[default_cluster_name][word] = 1
default_words[word] = default_cluster_name
result = calculator.calculate(lab, rec)
if verbose:
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('WER: %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
space = {}
space['lab'] = []
space['rec'] = []
for idx in range(len(result['lab'])):
len_lab = width(result['lab'][idx])
len_rec = width(result['rec'][idx])
length = max(len_lab, len_rec)
space['lab'].append(length - len_lab)
space['rec'].append(length - len_rec)
upper_lab = len(result['lab'])
upper_rec = len(result['rec'])
lab1, rec1 = 0, 0
while lab1 < upper_lab or rec1 < upper_rec:
if verbose > 1:
print('lab(%s):' % fid.encode('utf-8'), end=' ')
else:
print('lab:', end=' ')
lab2 = min(upper_lab, lab1 + max_words_per_line)
for idx in range(lab1, lab2):
token = result['lab'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['lab'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print()
if verbose > 1:
print('rec(%s):' % fid.encode('utf-8'), end=' ')
else:
print('rec:', end=' ')
rec2 = min(upper_rec, rec1 + max_words_per_line)
for idx in range(rec1, rec2):
token = result['rec'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['rec'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print('\n', end='\n')
lab1 = lab2
rec1 = rec2
if verbose:
print(
'==========================================================================='
)
print()
result = calculator.overall()
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('Overall -> %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if not verbose:
print()
if verbose:
for cluster_id in default_clusters:
result = calculator.cluster(
[k for k in default_clusters[cluster_id]])
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if len(cluster_file) > 0: # compute separated WERs for word clusters
cluster_id = ''
cluster = []
for line in open(cluster_file, 'r', encoding='utf-8'):
for token in line.decode('utf-8').rstrip('\n').split():
# end of cluster reached, like </Keyword>
if token[0:2] == '</' and token[len(token)-1] == '>' and \
token.lstrip('</').rstrip('>') == cluster_id :
result = calculator.cluster(cluster)
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'],
result['del'], result['ins']))
cluster_id = ''
cluster = []
# begin of cluster reached, like <Keyword>
elif token[0] == '<' and token[len(token)-1] == '>' and \
cluster_id == '' :
cluster_id = token.lstrip('<').rstrip('>')
cluster = []
# general terms, like WEATHER / CAR / ...
else:
cluster.append(token)
print()
print(
'==========================================================================='
)
if __name__ == '__main__':
main()

@ -0,0 +1,154 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""format manifest with more metadata."""
import argparse
import functools
import json
import jsonlines
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.frontend.utility import load_cmvn
from paddlespeech.s2t.io.utility import feat_type
from paddlespeech.utils.argparse import add_arguments
from paddlespeech.utils.argparse import print_arguments
def define_argparse():
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('manifest_paths', str,
None,
"Filepaths of manifests for building vocabulary. "
"You can provide multiple manifest files.",
nargs='+',
required=True)
add_arg('output_path', str, None, "filepath of formated manifest.", required=True)
add_arg('cmvn_path', str,
'examples/librispeech/data/mean_std.json',
"Filepath of cmvn.")
add_arg('unit_type', str, "char", "Unit type, e.g. char, word, spm")
add_arg('vocab_path', str,
'examples/librispeech/data/vocab.txt',
"Filepath of the vocabulary.")
# bpe
add_arg('spm_model_prefix', str, None,
"spm model prefix, spm_model_%(bpe_mode)_%(count_threshold), only need when `unit_type` is spm")
# yapf: disable
args = parser.parse_args()
return args
def format_data(
manifest_paths="",
output_path="",
cmvn_path="examples/librispeech/data/mean_std.json",
unit_type="char",
vocab_path="examples/librispeech/data/vocab.txt",
spm_model_prefix=""):
fout = open(output_path, 'w', encoding='utf-8')
# get feat dim
filetype = cmvn_path.split(".")[-1]
mean, istd = load_cmvn(cmvn_path, filetype=filetype)
feat_dim = mean.shape[0] #(D)
print(f"Feature dim: {feat_dim}")
text_feature = TextFeaturizer(unit_type, vocab_path, spm_model_prefix)
vocab_size = text_feature.vocab_size
print(f"Vocab size: {vocab_size}")
# josnline like this
# {
# "input": [{"name": "input1", "shape": (100, 83), "feat": "xxx.ark:123"}],
# "output": [{"name":"target1", "shape": (40, 5002), "text": "a b c de"}],
# "utt2spk": "111-2222",
# "utt": "111-2222-333"
# }
count = 0
for manifest_path in manifest_paths:
with jsonlines.open(str(manifest_path), 'r') as reader:
manifest_jsons = list(reader)
for line_json in manifest_jsons:
output_json = {
"input": [],
"output": [],
'utt': line_json['utt'],
'utt2spk': line_json.get('utt2spk', 'global'),
}
# output
line = line_json['text']
if isinstance(line, str):
# only one target
tokens = text_feature.tokenize(line)
tokenids = text_feature.featurize(line)
output_json['output'].append({
'name': 'target1',
'shape': (len(tokenids), vocab_size),
'text': line,
'token': ' '.join(tokens),
'tokenid': ' '.join(map(str, tokenids)),
})
else:
# isinstance(line, list), multi target in one vocab
for i, item in enumerate(line, 1):
tokens = text_feature.tokenize(item)
tokenids = text_feature.featurize(item)
output_json['output'].append({
'name': f'target{i}',
'shape': (len(tokenids), vocab_size),
'text': item,
'token': ' '.join(tokens),
'tokenid': ' '.join(map(str, tokenids)),
})
# input
line = line_json['feat']
if isinstance(line, str):
# only one input
feat_shape = line_json['feat_shape']
assert isinstance(feat_shape, (list, tuple)), type(feat_shape)
filetype = feat_type(line)
if filetype == 'sound':
feat_shape.append(feat_dim)
else: # kaldi
raise NotImplementedError('no support kaldi feat now!')
output_json['input'].append({
"name": "input1",
"shape": feat_shape,
"feat": line,
"filetype": filetype,
})
else:
# isinstance(line, list), multi input
raise NotImplementedError("not support multi input now!")
fout.write(json.dumps(output_json) + '\n')
count += 1
print(f"{manifest_paths} Examples number: {count}")
fout.close()
def main():
args = define_argparse()
print_arguments(args, globals())
format_data(**vars(args))
if __name__ == '__main__':
main()

@ -0,0 +1,143 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
format ref/hyp file for `utt text` format to compute CER/WER/MER.
norm:
BAC009S0764W0196 明确了发展目标和重点任务
BAC009S0764W0186 实现我国房地产市场的平稳运行
sclite:
加大对结构机械化环境和收集谈控机制力度(BAC009S0906W0240.wav)
河南省新乡市丰秋县刘光镇政府东五零左右(BAC009S0770W0441.wav)
"""
import argparse
import jsonlines
from paddlespeech.utils.argparse import print_arguments
def transform_hyp(origin, trans, trans_sclite):
"""
Args:
origin: The input json file which contains the model output
trans: The output file for caculate CER/WER
trans_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin, "r+", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["hyps"][0]
if trans:
with open(trans, "w+", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
print(f"transform_hyp output: {trans}")
if trans_sclite:
with open(trans_sclite, "w+") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
print(f"transform_hyp output: {trans_sclite}")
def transform_ref(origin, trans, trans_sclite):
"""
Args:
origin: The input json file which contains the model output
trans: The output file for caculate CER/WER
trans_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin, "r", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["text"]
if trans:
with open(trans, "w", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
print(f"transform_hyp output: {trans}")
if trans_sclite:
with open(trans_sclite, "w") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
print(f"transform_hyp output: {trans_sclite}")
def define_argparse():
parser = argparse.ArgumentParser(
prog='format ref/hyp file for compute CER/WER', add_help=True)
parser.add_argument(
'--origin_hyp', type=str, default="", help='origin hyp file')
parser.add_argument(
'--trans_hyp',
type=str,
default="",
help='hyp file for caculating CER/WER')
parser.add_argument(
'--trans_hyp_sclite',
type=str,
default="",
help='hyp file for caculating CER/WER by sclite')
parser.add_argument(
'--origin_ref', type=str, default="", help='origin ref file')
parser.add_argument(
'--trans_ref',
type=str,
default="",
help='ref file for caculating CER/WER')
parser.add_argument(
'--trans_ref_sclite',
type=str,
default="",
help='ref file for caculating CER/WER by sclite')
parser_args = parser.parse_args()
return parser_args
def format_result(origin_hyp="",
trans_hyp="",
trans_hyp_sclite="",
origin_ref="",
trans_ref="",
trans_ref_sclite=""):
if origin_hyp:
transform_hyp(
origin=origin_hyp, trans=trans_hyp, trans_sclite=trans_hyp_sclite)
if origin_ref:
transform_ref(
origin=origin_ref, trans=trans_ref, trans_sclite=trans_ref_sclite)
def main():
args = define_argparse()
print_arguments(args, globals())
format_result(**vars(args))
if __name__ == "__main__":
main()

@ -28,8 +28,8 @@ from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.socket_server import AsrRequestHandler
from paddlespeech.s2t.utils.socket_server import AsrTCPServer
from paddlespeech.s2t.utils.socket_server import warm_up_test
from paddlespeech.s2t.utils.utility import add_arguments
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import add_arguments
from paddlespeech.utils.argparse import print_arguments
def init_predictor(args):

@ -26,8 +26,8 @@ from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.socket_server import AsrRequestHandler
from paddlespeech.s2t.utils.socket_server import AsrTCPServer
from paddlespeech.s2t.utils.socket_server import warm_up_test
from paddlespeech.s2t.utils.utility import add_arguments
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import add_arguments
from paddlespeech.utils.argparse import print_arguments
def start_server(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2ExportTester as ExportTester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -27,8 +27,8 @@ from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils import mp_tools
from paddlespeech.s2t.utils.checkpoint import Checkpoint
from paddlespeech.s2t.utils.log import Log
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.utils.argparse import print_arguments
logger = Log(__name__).getlog()

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Trainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -18,7 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Trainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
# from paddlespeech.s2t.exps.u2.trainer import U2Trainer as Trainer

@ -18,7 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
model_test_alias = {
"u2": "paddlespeech.s2t.exps.u2.model:U2Tester",

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
model_train_alias = {
"u2": "paddlespeech.s2t.exps.u2.model:U2Trainer",

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2_st.model import U2STTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -18,7 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2_st.model import U2STTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2_st.model import U2STTrainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -18,7 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.wav2vec2.model import Wav2Vec2ASRTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.wav2vec2.model import Wav2Vec2ASRTrainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args):

@ -48,13 +48,16 @@ class TextFeaturizer():
self.unit_type = unit_type
self.unk = UNK
self.maskctc = maskctc
self.vocab_path_or_list = vocab
if vocab:
if self.vocab_path_or_list:
self.vocab_dict, self._id2token, self.vocab_list, self.unk_id, self.eos_id, self.blank_id = self._load_vocabulary_from_file(
vocab, maskctc)
self.vocab_size = len(self.vocab_list)
else:
logger.warning("TextFeaturizer: not have vocab file or vocab list.")
logger.warning(
"TextFeaturizer: not have vocab file or vocab list. Only Tokenizer can use, can not convert to token idx"
)
if unit_type == 'spm':
spm_model = spm_model_prefix + '.model'
@ -62,6 +65,7 @@ class TextFeaturizer():
self.sp.Load(spm_model)
def tokenize(self, text, replace_space=True):
"""tokenizer split text into text tokens"""
if self.unit_type == 'char':
tokens = self.char_tokenize(text, replace_space)
elif self.unit_type == 'word':
@ -71,6 +75,7 @@ class TextFeaturizer():
return tokens
def detokenize(self, tokens):
"""tokenizer convert text tokens back to text"""
if self.unit_type == 'char':
text = self.char_detokenize(tokens)
elif self.unit_type == 'word':
@ -88,6 +93,7 @@ class TextFeaturizer():
Returns:
List[int]: List of token indices.
"""
assert self.vocab_path_or_list, "toidx need vocab path or vocab list"
tokens = self.tokenize(text)
ids = []
for token in tokens:
@ -107,6 +113,7 @@ class TextFeaturizer():
Returns:
str: Text.
"""
assert self.vocab_path_or_list, "toidx need vocab path or vocab list"
tokens = []
for idx in idxs:
if idx == self.eos_id:
@ -127,10 +134,10 @@ class TextFeaturizer():
"""
text = text.strip()
if replace_space:
text_list = [SPACE if item == " " else item for item in list(text)]
tokens = [SPACE if item == " " else item for item in list(text)]
else:
text_list = list(text)
return text_list
tokens = list(text)
return tokens
def char_detokenize(self, tokens):
"""Character detokenizer.

@ -29,10 +29,7 @@ from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
__all__ = [
"all_version", "UpdateConfig", "seed_all", 'print_arguments',
'add_arguments', "log_add"
]
__all__ = ["all_version", "UpdateConfig", "seed_all", "log_add"]
def all_version():
@ -60,51 +57,6 @@ def seed_all(seed: int=20210329):
paddle.seed(seed)
def print_arguments(args, info=None):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
filename = ""
if info:
filename = info["__file__"]
filename = os.path.basename(filename)
print(f"----------- {filename} Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("-----------------------------------------------------------")
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def log_add(args: List[int]) -> float:
"""Stable log add

@ -16,6 +16,8 @@ import os
import sys
from typing import Text
import distutils
__all__ = ["print_arguments", "add_arguments", "get_commandline_args"]

@ -12,105 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import json
import os
import numpy as np
import paddle
def main(args):
paddle.set_device('cpu')
val_scores = []
beat_val_scores = None
selected_epochs = None
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
jsons = sorted(jsons, key=os.path.getmtime, reverse=True)
for y in jsons:
with open(y, 'r') as f:
dic_json = json.load(f)
loss = dic_json['val_loss']
epoch = dic_json['epoch']
if epoch >= args.min_epoch and epoch <= args.max_epoch:
val_scores.append((epoch, loss))
val_scores = np.array(val_scores)
if args.val_best:
sort_idx = np.argsort(val_scores[:, 1])
sorted_val_scores = val_scores[sort_idx]
else:
sorted_val_scores = val_scores
beat_val_scores = sorted_val_scores[:args.num, 1]
selected_epochs = sorted_val_scores[:args.num, 0].astype(np.int64)
avg_val_score = np.mean(beat_val_scores)
print("selected val scores = " + str(beat_val_scores))
print("selected epochs = " + str(selected_epochs))
print("averaged val score = " + str(avg_val_score))
path_list = [
args.ckpt_dir + '/{}.pdparams'.format(int(epoch))
for epoch in sorted_val_scores[:args.num, 0]
]
print(path_list)
avg = None
num = args.num
assert num == len(path_list)
for path in path_list:
print(f'Processing {path}')
states = paddle.load(path)
if avg is None:
avg = states
else:
for k in avg.keys():
avg[k] += states[k]
# average
for k in avg.keys():
if avg[k] is not None:
avg[k] /= num
paddle.save(avg, args.dst_model)
print(f'Saving to {args.dst_model}')
meta_path = os.path.splitext(args.dst_model)[0] + '.avg.json'
with open(meta_path, 'w') as f:
data = json.dumps({
"mode": 'val_best' if args.val_best else 'latest',
"avg_ckpt": args.dst_model,
"val_loss_mean": avg_val_score,
"ckpts": path_list,
"epochs": selected_epochs.tolist(),
"val_losses": beat_val_scores.tolist(),
})
f.write(data + "\n")
from paddlespeech.dataset.s2t import avg_ckpts_main
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='average model')
parser.add_argument('--dst_model', required=True, help='averaged model')
parser.add_argument(
'--ckpt_dir', required=True, help='ckpt model dir for average')
parser.add_argument(
'--val_best', action="store_true", help='averaged model')
parser.add_argument(
'--num', default=5, type=int, help='nums for averaged model')
parser.add_argument(
'--min_epoch',
default=0,
type=int,
help='min epoch used for averaging model')
parser.add_argument(
'--max_epoch',
default=65536, # Big enough
type=int,
help='max epoch used for averaging model')
args = parser.parse_args()
print(args)
main(args)
avg_ckpts_main()

@ -15,134 +15,7 @@
"""Build vocabulary from manifest files.
Each item in vocabulary file is a character.
"""
import argparse
import functools
import os
import tempfile
from collections import Counter
import jsonlines
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.frontend.utility import BLANK
from paddlespeech.s2t.frontend.utility import SOS
from paddlespeech.s2t.frontend.utility import SPACE
from paddlespeech.s2t.frontend.utility import UNK
from paddlespeech.s2t.utils.utility import add_arguments
from paddlespeech.s2t.utils.utility import print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('unit_type', str, "char", "Unit type, e.g. char, word, spm")
add_arg('count_threshold', int, 0,
"Truncation threshold for char/word counts.Default 0, no truncate.")
add_arg('vocab_path', str,
'examples/librispeech/data/vocab.txt',
"Filepath to write the vocabulary.")
add_arg('manifest_paths', str,
None,
"Filepaths of manifests for building vocabulary. "
"You can provide multiple manifest files.",
nargs='+',
required=True)
add_arg('text_keys', str,
'text',
"keys of the text in manifest for building vocabulary. "
"You can provide multiple k.",
nargs='+')
# bpe
add_arg('spm_vocab_size', int, 0, "Vocab size for spm.")
add_arg('spm_mode', str, 'unigram', "spm model type, e.g. unigram, spm, char, word. only need when `unit_type` is spm")
add_arg('spm_model_prefix', str, "", "spm_model_%(spm_mode)_%(count_threshold), spm model prefix, only need when `unit_type` is spm")
add_arg('spm_character_coverage', float, 0.9995, "character coverage to determine the minimum symbols")
# yapf: disable
args = parser.parse_args()
def count_manifest(counter, text_feature, manifest_path):
manifest_jsons = []
with jsonlines.open(manifest_path, 'r') as reader:
for json_data in reader:
manifest_jsons.append(json_data)
for line_json in manifest_jsons:
if isinstance(line_json['text'], str):
line = text_feature.tokenize(line_json['text'], replace_space=False)
counter.update(line)
else:
assert isinstance(line_json['text'], list)
for text in line_json['text']:
line = text_feature.tokenize(text, replace_space=False)
counter.update(line)
def dump_text_manifest(fileobj, manifest_path, key='text'):
manifest_jsons = []
with jsonlines.open(manifest_path, 'r') as reader:
for json_data in reader:
manifest_jsons.append(json_data)
for line_json in manifest_jsons:
if isinstance(line_json[key], str):
fileobj.write(line_json[key] + "\n")
else:
assert isinstance(line_json[key], list)
for line in line_json[key]:
fileobj.write(line + "\n")
def main():
print_arguments(args, globals())
fout = open(args.vocab_path, 'w', encoding='utf-8')
fout.write(BLANK + "\n") # 0 will be used for "blank" in CTC
fout.write(UNK + '\n') # <unk> must be 1
if args.unit_type == 'spm':
# tools/spm_train --input=$wave_data/lang_char/input.txt
# --vocab_size=${nbpe} --model_type=${bpemode}
# --model_prefix=${bpemodel} --input_sentence_size=100000000
import sentencepiece as spm
fp = tempfile.NamedTemporaryFile(mode='w', delete=False)
for manifest_path in args.manifest_paths:
text_keys = [args.text_keys] if type(args.text_keys) is not list else args.text_keys
for text_key in text_keys:
dump_text_manifest(fp, manifest_path, key=text_key)
fp.close()
# train
spm.SentencePieceTrainer.Train(
input=fp.name,
vocab_size=args.spm_vocab_size,
model_type=args.spm_mode,
model_prefix=args.spm_model_prefix,
input_sentence_size=100000000,
character_coverage=args.spm_character_coverage)
os.unlink(fp.name)
# encode
text_feature = TextFeaturizer(args.unit_type, "", args.spm_model_prefix)
counter = Counter()
for manifest_path in args.manifest_paths:
count_manifest(counter, text_feature, manifest_path)
count_sorted = sorted(counter.items(), key=lambda x: x[1], reverse=True)
tokens = []
for token, count in count_sorted:
if count < args.count_threshold:
break
# replace space by `<space>`
token = SPACE if token == ' ' else token
tokens.append(token)
tokens = sorted(tokens)
for token in tokens:
fout.write(token + '\n')
fout.write(SOS + "\n") # <sos/eos>
fout.close()
from paddlespeech.dataset.s2t import build_vocab_main
if __name__ == '__main__':
main()
build_vocab_main()

@ -1,554 +1,5 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2021 Mobvoi Inc. All Rights Reserved.
import codecs
import re
import sys
import unicodedata
remove_tag = True
spacelist = [' ', '\t', '\r', '\n']
puncts = [
'!', ',', '?', '', '', '', '', '', '', '', '', '', '', '', '',
'', ''
]
def characterize(string):
res = []
i = 0
while i < len(string):
char = string[i]
if char in puncts:
i += 1
continue
cat1 = unicodedata.category(char)
#https://unicodebook.readthedocs.io/unicode.html#unicode-categories
if cat1 == 'Zs' or cat1 == 'Cn' or char in spacelist: # space or not assigned
i += 1
continue
if cat1 == 'Lo': # letter-other
res.append(char)
i += 1
else:
# some input looks like: <unk><noise>, we want to separate it to two words.
sep = ' '
if char == '<': sep = '>'
j = i + 1
while j < len(string):
c = string[j]
if ord(c) >= 128 or (c in spacelist) or (c == sep):
break
j += 1
if j < len(string) and string[j] == '>':
j += 1
res.append(string[i:j])
i = j
return res
def stripoff_tags(x):
if not x: return ''
chars = []
i = 0
T = len(x)
while i < T:
if x[i] == '<':
while i < T and x[i] != '>':
i += 1
i += 1
else:
chars.append(x[i])
i += 1
return ''.join(chars)
def normalize(sentence, ignore_words, cs, split=None):
""" sentence, ignore_words are both in unicode
"""
new_sentence = []
for token in sentence:
x = token
if not cs:
x = x.upper()
if x in ignore_words:
continue
if remove_tag:
x = stripoff_tags(x)
if not x:
continue
if split and x in split:
new_sentence += split[x]
else:
new_sentence.append(x)
return new_sentence
class Calculator:
def __init__(self):
self.data = {}
self.space = []
self.cost = {}
self.cost['cor'] = 0
self.cost['sub'] = 1
self.cost['del'] = 1
self.cost['ins'] = 1
def calculate(self, lab, rec):
# Initialization
lab.insert(0, '')
rec.insert(0, '')
while len(self.space) < len(lab):
self.space.append([])
for row in self.space:
for element in row:
element['dist'] = 0
element['error'] = 'non'
while len(row) < len(rec):
row.append({'dist': 0, 'error': 'non'})
for i in range(len(lab)):
self.space[i][0]['dist'] = i
self.space[i][0]['error'] = 'del'
for j in range(len(rec)):
self.space[0][j]['dist'] = j
self.space[0][j]['error'] = 'ins'
self.space[0][0]['error'] = 'non'
for token in lab:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
for token in rec:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
# Computing edit distance
for i, lab_token in enumerate(lab):
for j, rec_token in enumerate(rec):
if i == 0 or j == 0:
continue
min_dist = sys.maxsize
min_error = 'none'
dist = self.space[i - 1][j]['dist'] + self.cost['del']
error = 'del'
if dist < min_dist:
min_dist = dist
min_error = error
dist = self.space[i][j - 1]['dist'] + self.cost['ins']
error = 'ins'
if dist < min_dist:
min_dist = dist
min_error = error
if lab_token == rec_token:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['cor']
error = 'cor'
else:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['sub']
error = 'sub'
if dist < min_dist:
min_dist = dist
min_error = error
self.space[i][j]['dist'] = min_dist
self.space[i][j]['error'] = min_error
# Tracing back
result = {
'lab': [],
'rec': [],
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
i = len(lab) - 1
j = len(rec) - 1
while True:
if self.space[i][j]['error'] == 'cor': # correct
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['cor'] = self.data[lab[i]]['cor'] + 1
result['all'] = result['all'] + 1
result['cor'] = result['cor'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'sub': # substitution
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['sub'] = self.data[lab[i]]['sub'] + 1
result['all'] = result['all'] + 1
result['sub'] = result['sub'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'del': # deletion
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['del'] = self.data[lab[i]]['del'] + 1
result['all'] = result['all'] + 1
result['del'] = result['del'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, "")
i = i - 1
elif self.space[i][j]['error'] == 'ins': # insertion
if len(rec[j]) > 0:
self.data[rec[j]]['ins'] = self.data[rec[j]]['ins'] + 1
result['ins'] = result['ins'] + 1
result['lab'].insert(0, "")
result['rec'].insert(0, rec[j])
j = j - 1
elif self.space[i][j]['error'] == 'non': # starting point
break
else: # shouldn't reach here
print(
'this should not happen , i = {i} , j = {j} , error = {error}'.
format(i=i, j=j, error=self.space[i][j]['error']))
return result
def overall(self):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def cluster(self, data):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in data:
if token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def keys(self):
return list(self.data.keys())
def width(string):
return sum(1 + (unicodedata.east_asian_width(c) in "AFW") for c in string)
def default_cluster(word):
unicode_names = [unicodedata.name(char) for char in word]
for i in reversed(range(len(unicode_names))):
if unicode_names[i].startswith('DIGIT'): # 1
unicode_names[i] = 'Number' # 'DIGIT'
elif (unicode_names[i].startswith('CJK UNIFIED IDEOGRAPH') or
unicode_names[i].startswith('CJK COMPATIBILITY IDEOGRAPH')):
# 明 / 郎
unicode_names[i] = 'Mandarin' # 'CJK IDEOGRAPH'
elif (unicode_names[i].startswith('LATIN CAPITAL LETTER') or
unicode_names[i].startswith('LATIN SMALL LETTER')):
# A / a
unicode_names[i] = 'English' # 'LATIN LETTER'
elif unicode_names[i].startswith('HIRAGANA LETTER'): # は こ め
unicode_names[i] = 'Japanese' # 'GANA LETTER'
elif (unicode_names[i].startswith('AMPERSAND') or
unicode_names[i].startswith('APOSTROPHE') or
unicode_names[i].startswith('COMMERCIAL AT') or
unicode_names[i].startswith('DEGREE CELSIUS') or
unicode_names[i].startswith('EQUALS SIGN') or
unicode_names[i].startswith('FULL STOP') or
unicode_names[i].startswith('HYPHEN-MINUS') or
unicode_names[i].startswith('LOW LINE') or
unicode_names[i].startswith('NUMBER SIGN') or
unicode_names[i].startswith('PLUS SIGN') or
unicode_names[i].startswith('SEMICOLON')):
# & / ' / @ / ℃ / = / . / - / _ / # / + / ;
del unicode_names[i]
else:
return 'Other'
if len(unicode_names) == 0:
return 'Other'
if len(unicode_names) == 1:
return unicode_names[0]
for i in range(len(unicode_names) - 1):
if unicode_names[i] != unicode_names[i + 1]:
return 'Other'
return unicode_names[0]
def usage():
print(
"compute-wer.py : compute word error rate (WER) and align recognition results and references."
)
print(
" usage : python compute-wer.py [--cs={0,1}] [--cluster=foo] [--ig=ignore_file] [--char={0,1}] [--v={0,1}] [--padding-symbol={space,underline}] test.ref test.hyp > test.wer"
)
from paddlespeech.dataset.s2t import compute_wer_main
if __name__ == '__main__':
if len(sys.argv) == 1:
usage()
sys.exit(0)
calculator = Calculator()
cluster_file = ''
ignore_words = set()
tochar = False
verbose = 1
padding_symbol = ' '
case_sensitive = False
max_words_per_line = sys.maxsize
split = None
while len(sys.argv) > 3:
a = '--maxw='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):]
del sys.argv[1]
max_words_per_line = int(b)
continue
a = '--rt='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
remove_tag = (b == 'true') or (b != '0')
continue
a = '--cs='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
case_sensitive = (b == 'true') or (b != '0')
continue
a = '--cluster='
if sys.argv[1].startswith(a):
cluster_file = sys.argv[1][len(a):]
del sys.argv[1]
continue
a = '--splitfile='
if sys.argv[1].startswith(a):
split_file = sys.argv[1][len(a):]
del sys.argv[1]
split = dict()
with codecs.open(split_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
words = line.strip().split()
if len(words) >= 2:
split[words[0]] = words[1:]
continue
a = '--ig='
if sys.argv[1].startswith(a):
ignore_file = sys.argv[1][len(a):]
del sys.argv[1]
with codecs.open(ignore_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
line = line.strip()
if len(line) > 0:
ignore_words.add(line)
continue
a = '--char='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
tochar = (b == 'true') or (b != '0')
continue
a = '--v='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
verbose = 0
try:
verbose = int(b)
except:
if b == 'true' or b != '0':
verbose = 1
continue
a = '--padding-symbol='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
if b == 'space':
padding_symbol = ' '
elif b == 'underline':
padding_symbol = '_'
continue
if True or sys.argv[1].startswith('-'):
#ignore invalid switch
del sys.argv[1]
continue
if not case_sensitive:
ig = set([w.upper() for w in ignore_words])
ignore_words = ig
default_clusters = {}
default_words = {}
ref_file = sys.argv[1]
hyp_file = sys.argv[2]
rec_set = {}
if split and not case_sensitive:
newsplit = dict()
for w in split:
words = split[w]
for i in range(len(words)):
words[i] = words[i].upper()
newsplit[w.upper()] = words
split = newsplit
with codecs.open(hyp_file, 'r', 'utf-8') as fh:
for line in fh:
if tochar:
array = characterize(line)
else:
array = line.strip().split()
if len(array) == 0: continue
fid = array[0]
rec_set[fid] = normalize(array[1:], ignore_words, case_sensitive,
split)
# compute error rate on the interaction of reference file and hyp file
for line in open(ref_file, 'r', encoding='utf-8'):
if tochar:
array = characterize(line)
else:
array = line.rstrip('\n').split()
if len(array) == 0: continue
fid = array[0]
if fid not in rec_set:
continue
lab = normalize(array[1:], ignore_words, case_sensitive, split)
rec = rec_set[fid]
if verbose:
print('\nutt: %s' % fid)
for word in rec + lab:
if word not in default_words:
default_cluster_name = default_cluster(word)
if default_cluster_name not in default_clusters:
default_clusters[default_cluster_name] = {}
if word not in default_clusters[default_cluster_name]:
default_clusters[default_cluster_name][word] = 1
default_words[word] = default_cluster_name
result = calculator.calculate(lab, rec)
if verbose:
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('WER: %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
space = {}
space['lab'] = []
space['rec'] = []
for idx in range(len(result['lab'])):
len_lab = width(result['lab'][idx])
len_rec = width(result['rec'][idx])
length = max(len_lab, len_rec)
space['lab'].append(length - len_lab)
space['rec'].append(length - len_rec)
upper_lab = len(result['lab'])
upper_rec = len(result['rec'])
lab1, rec1 = 0, 0
while lab1 < upper_lab or rec1 < upper_rec:
if verbose > 1:
print('lab(%s):' % fid.encode('utf-8'), end=' ')
else:
print('lab:', end=' ')
lab2 = min(upper_lab, lab1 + max_words_per_line)
for idx in range(lab1, lab2):
token = result['lab'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['lab'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print()
if verbose > 1:
print('rec(%s):' % fid.encode('utf-8'), end=' ')
else:
print('rec:', end=' ')
rec2 = min(upper_rec, rec1 + max_words_per_line)
for idx in range(rec1, rec2):
token = result['rec'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['rec'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print('\n', end='\n')
lab1 = lab2
rec1 = rec2
if verbose:
print(
'==========================================================================='
)
print()
result = calculator.overall()
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('Overall -> %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if not verbose:
print()
if verbose:
for cluster_id in default_clusters:
result = calculator.cluster(
[k for k in default_clusters[cluster_id]])
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if len(cluster_file) > 0: # compute separated WERs for word clusters
cluster_id = ''
cluster = []
for line in open(cluster_file, 'r', encoding='utf-8'):
for token in line.decode('utf-8').rstrip('\n').split():
# end of cluster reached, like </Keyword>
if token[0:2] == '</' and token[len(token)-1] == '>' and \
token.lstrip('</').rstrip('>') == cluster_id :
result = calculator.cluster(cluster)
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'],
result['del'], result['ins']))
cluster_id = ''
cluster = []
# begin of cluster reached, like <Keyword>
elif token[0] == '<' and token[len(token)-1] == '>' and \
cluster_id == '' :
cluster_id = token.lstrip('<').rstrip('>')
cluster = []
# general terms, like WEATHER / CAR / ...
else:
cluster.append(token)
print()
print(
'==========================================================================='
)
compute_wer_main()

@ -13,75 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Compute mean and std for feature normalizer, and save to file."""
import argparse
import functools
from paddlespeech.s2t.frontend.augmentor.augmentation import AugmentationPipeline
from paddlespeech.s2t.frontend.featurizer.audio_featurizer import AudioFeaturizer
from paddlespeech.s2t.frontend.normalizer import FeatureNormalizer
from paddlespeech.s2t.utils.utility import add_arguments
from paddlespeech.s2t.utils.utility import print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('num_samples', int, 2000, "# of samples to for statistics.")
add_arg('spectrum_type', str,
'linear',
"Audio feature type. Options: linear, mfcc, fbank.",
choices=['linear', 'mfcc', 'fbank'])
add_arg('feat_dim', int, 13, "Audio feature dim.")
add_arg('delta_delta', bool, False, "Audio feature with delta delta.")
add_arg('stride_ms', int, 10, "stride length in ms.")
add_arg('window_ms', int, 20, "stride length in ms.")
add_arg('sample_rate', int, 16000, "target sample rate.")
add_arg('use_dB_normalization', bool, True, "do dB normalization.")
add_arg('target_dB', int, -20, "target dB.")
add_arg('manifest_path', str,
'data/librispeech/manifest.train',
"Filepath of manifest to compute normalizer's mean and stddev.")
add_arg('num_workers',
default=0,
type=int,
help='num of subprocess workers for processing')
add_arg('output_path', str,
'data/librispeech/mean_std.npz',
"Filepath of write mean and stddev to (.npz).")
# yapf: disable
args = parser.parse_args()
def main():
print_arguments(args, globals())
augmentation_pipeline = AugmentationPipeline('{}')
audio_featurizer = AudioFeaturizer(
spectrum_type=args.spectrum_type,
feat_dim=args.feat_dim,
delta_delta=args.delta_delta,
stride_ms=float(args.stride_ms),
window_ms=float(args.window_ms),
n_fft=None,
max_freq=None,
target_sample_rate=args.sample_rate,
use_dB_normalization=args.use_dB_normalization,
target_dB=args.target_dB,
dither=0.0)
def augment_and_featurize(audio_segment):
augmentation_pipeline.transform_audio(audio_segment)
return audio_featurizer.featurize(audio_segment)
normalizer = FeatureNormalizer(
mean_std_filepath=None,
manifest_path=args.manifest_path,
featurize_func=augment_and_featurize,
num_samples=args.num_samples,
num_workers=args.num_workers)
normalizer.write_to_file(args.output_path)
from paddlespeech.dataset.s2t import compute_mean_std_main
if __name__ == '__main__':
main()
compute_mean_std_main()

@ -13,130 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""format manifest with more metadata."""
import argparse
import functools
import json
import jsonlines
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.frontend.utility import load_cmvn
from paddlespeech.s2t.io.utility import feat_type
from paddlespeech.s2t.utils.utility import add_arguments
from paddlespeech.s2t.utils.utility import print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('cmvn_path', str,
'examples/librispeech/data/mean_std.json',
"Filepath of cmvn.")
add_arg('unit_type', str, "char", "Unit type, e.g. char, word, spm")
add_arg('vocab_path', str,
'examples/librispeech/data/vocab.txt',
"Filepath of the vocabulary.")
add_arg('manifest_paths', str,
None,
"Filepaths of manifests for building vocabulary. "
"You can provide multiple manifest files.",
nargs='+',
required=True)
# bpe
add_arg('spm_model_prefix', str, None,
"spm model prefix, spm_model_%(bpe_mode)_%(count_threshold), only need when `unit_type` is spm")
add_arg('output_path', str, None, "filepath of formated manifest.", required=True)
# yapf: disable
args = parser.parse_args()
def main():
print_arguments(args, globals())
fout = open(args.output_path, 'w', encoding='utf-8')
# get feat dim
filetype = args.cmvn_path.split(".")[-1]
mean, istd = load_cmvn(args.cmvn_path, filetype=filetype)
feat_dim = mean.shape[0] #(D)
print(f"Feature dim: {feat_dim}")
text_feature = TextFeaturizer(args.unit_type, args.vocab_path, args.spm_model_prefix)
vocab_size = text_feature.vocab_size
print(f"Vocab size: {vocab_size}")
# josnline like this
# {
# "input": [{"name": "input1", "shape": (100, 83), "feat": "xxx.ark:123"}],
# "output": [{"name":"target1", "shape": (40, 5002), "text": "a b c de"}],
# "utt2spk": "111-2222",
# "utt": "111-2222-333"
# }
count = 0
for manifest_path in args.manifest_paths:
with jsonlines.open(str(manifest_path), 'r') as reader:
manifest_jsons = list(reader)
for line_json in manifest_jsons:
output_json = {
"input": [],
"output": [],
'utt': line_json['utt'],
'utt2spk': line_json.get('utt2spk', 'global'),
}
# output
line = line_json['text']
if isinstance(line, str):
# only one target
tokens = text_feature.tokenize(line)
tokenids = text_feature.featurize(line)
output_json['output'].append({
'name': 'target1',
'shape': (len(tokenids), vocab_size),
'text': line,
'token': ' '.join(tokens),
'tokenid': ' '.join(map(str, tokenids)),
})
else:
# isinstance(line, list), multi target in one vocab
for i, item in enumerate(line, 1):
tokens = text_feature.tokenize(item)
tokenids = text_feature.featurize(item)
output_json['output'].append({
'name': f'target{i}',
'shape': (len(tokenids), vocab_size),
'text': item,
'token': ' '.join(tokens),
'tokenid': ' '.join(map(str, tokenids)),
})
# input
line = line_json['feat']
if isinstance(line, str):
# only one input
feat_shape = line_json['feat_shape']
assert isinstance(feat_shape, (list, tuple)), type(feat_shape)
filetype = feat_type(line)
if filetype == 'sound':
feat_shape.append(feat_dim)
else: # kaldi
raise NotImplementedError('no support kaldi feat now!')
output_json['input'].append({
"name": "input1",
"shape": feat_shape,
"feat": line,
"filetype": filetype,
})
else:
# isinstance(line, list), multi input
raise NotImplementedError("not support multi input now!")
fout.write(json.dumps(output_json) + '\n')
count += 1
print(f"{args.manifest_paths} Examples number: {count}")
fout.close()
from paddlespeech.dataset.s2t import format_data_main
if __name__ == '__main__':
main()
format_data_main()

@ -11,96 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from paddlespeech.dataset.s2t import format_rsl_main
import jsonlines
def trans_hyp(origin_hyp, trans_hyp=None, trans_hyp_sclite=None):
"""
Args:
origin_hyp: The input json file which contains the model output
trans_hyp: The output file for caculate CER/WER
trans_hyp_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin_hyp, "r+", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["hyps"][0]
if trans_hyp is not None:
with open(trans_hyp, "w+", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
if trans_hyp_sclite is not None:
with open(trans_hyp_sclite, "w+") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
def trans_ref(origin_ref, trans_ref=None, trans_ref_sclite=None):
"""
Args:
origin_hyp: The input json file which contains the model output
trans_hyp: The output file for caculate CER/WER
trans_hyp_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin_ref, "r", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["text"]
if trans_ref is not None:
with open(trans_ref, "w", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
if trans_ref_sclite is not None:
with open(trans_ref_sclite, "w") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='format hyp file for compute CER/WER', add_help=True)
parser.add_argument(
'--origin_hyp', type=str, default=None, help='origin hyp file')
parser.add_argument(
'--trans_hyp',
type=str,
default=None,
help='hyp file for caculating CER/WER')
parser.add_argument(
'--trans_hyp_sclite',
type=str,
default=None,
help='hyp file for caculating CER/WER by sclite')
parser.add_argument(
'--origin_ref', type=str, default=None, help='origin ref file')
parser.add_argument(
'--trans_ref',
type=str,
default=None,
help='ref file for caculating CER/WER')
parser.add_argument(
'--trans_ref_sclite',
type=str,
default=None,
help='ref file for caculating CER/WER by sclite')
parser_args = parser.parse_args()
if parser_args.origin_hyp is not None:
trans_hyp(
origin_hyp=parser_args.origin_hyp,
trans_hyp=parser_args.trans_hyp,
trans_hyp_sclite=parser_args.trans_hyp_sclite, )
if parser_args.origin_ref is not None:
trans_ref(
origin_ref=parser_args.origin_ref,
trans_ref=parser_args.trans_ref,
trans_ref_sclite=parser_args.trans_ref_sclite, )
if __name__ == '__main__':
format_rsl_main()

@ -22,8 +22,8 @@ import jsonlines
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.frontend.utility import load_cmvn
from paddlespeech.s2t.io.utility import feat_type
from paddlespeech.s2t.utils.utility import add_arguments
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.utils.argparse import add_arguments
from paddlespeech.utils.argparse import print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)

Loading…
Cancel
Save