|
|
|
// Copyright 2022 Horizon Robotics. All Rights Reserved.
|
|
|
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
// modified from
|
|
|
|
// https://github.com/wenet-e2e/wenet/blob/main/runtime/core/decoder/onnx_asr_model.cc
|
|
|
|
|
|
|
|
#include "nnet/u2_onnx_nnet.h"
|
|
|
|
#include "common/base/config.h"
|
|
|
|
|
|
|
|
namespace ppspeech {
|
|
|
|
|
|
|
|
void U2OnnxNnet::LoadModel(const std::string& model_dir) {
|
|
|
|
std::string encoder_onnx_path = model_dir + "/encoder.onnx";
|
|
|
|
std::string rescore_onnx_path = model_dir + "/decoder.onnx";
|
|
|
|
std::string ctc_onnx_path = model_dir + "/ctc.onnx";
|
|
|
|
std::string param_path = model_dir + "/param.onnx";
|
|
|
|
// 1. Load sessions
|
|
|
|
try {
|
|
|
|
encoder_ = std::make_shared<fastdeploy::Runtime>();
|
|
|
|
ctc_ = std::make_shared<fastdeploy::Runtime>();
|
|
|
|
rescore_ = std::make_shared<fastdeploy::Runtime>();
|
|
|
|
fastdeploy::RuntimeOption runtime_option;
|
|
|
|
runtime_option.UseOrtBackend();
|
|
|
|
runtime_option.UseCpu();
|
|
|
|
runtime_option.SetCpuThreadNum(1);
|
|
|
|
runtime_option.SetModelPath(encoder_onnx_path.c_str(), "", fastdeploy::ModelFormat::ONNX);
|
|
|
|
assert(encoder_->Init(runtime_option));
|
|
|
|
runtime_option.SetModelPath(rescore_onnx_path.c_str(), "", fastdeploy::ModelFormat::ONNX);
|
|
|
|
assert(rescore_->Init(runtime_option));
|
|
|
|
runtime_option.SetModelPath(ctc_onnx_path.c_str(), "", fastdeploy::ModelFormat::ONNX);
|
|
|
|
assert(ctc_->Init(runtime_option));
|
|
|
|
} catch (std::exception const& e) {
|
|
|
|
LOG(ERROR) << "error when load onnx model: " << e.what();
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
Config conf(param_path);
|
|
|
|
encoder_output_size_ = conf.Read("output_size", encoder_output_size_);
|
|
|
|
num_blocks_ = conf.Read("num_blocks", num_blocks_);
|
|
|
|
head_ = conf.Read("head", head_);
|
|
|
|
cnn_module_kernel_ = conf.Read("cnn_module_kernel", cnn_module_kernel_);
|
|
|
|
subsampling_rate_ = conf.Read("subsampling_rate", subsampling_rate_);
|
|
|
|
right_context_ = conf.Read("right_context", right_context_);
|
|
|
|
sos_= conf.Read("sos_symbol", sos_);
|
|
|
|
eos_= conf.Read("eos_symbol", eos_);
|
|
|
|
is_bidecoder_= conf.Read("is_bidirectional_decoder", is_bidecoder_);
|
|
|
|
chunk_size_= conf.Read("chunk_size", chunk_size_);
|
|
|
|
num_left_chunks_ = conf.Read("left_chunks", num_left_chunks_);
|
|
|
|
|
|
|
|
LOG(INFO) << "Onnx Model Info:";
|
|
|
|
LOG(INFO) << "\tencoder_output_size " << encoder_output_size_;
|
|
|
|
LOG(INFO) << "\tnum_blocks " << num_blocks_;
|
|
|
|
LOG(INFO) << "\thead " << head_;
|
|
|
|
LOG(INFO) << "\tcnn_module_kernel " << cnn_module_kernel_;
|
|
|
|
LOG(INFO) << "\tsubsampling_rate " << subsampling_rate_;
|
|
|
|
LOG(INFO) << "\tright_context " << right_context_;
|
|
|
|
LOG(INFO) << "\tsos " << sos_;
|
|
|
|
LOG(INFO) << "\teos " << eos_;
|
|
|
|
LOG(INFO) << "\tis bidirectional decoder " << is_bidecoder_;
|
|
|
|
LOG(INFO) << "\tchunk_size " << chunk_size_;
|
|
|
|
LOG(INFO) << "\tnum_left_chunks " << num_left_chunks_;
|
|
|
|
|
|
|
|
// 3. Read model nodes
|
|
|
|
LOG(INFO) << "Onnx Encoder:";
|
|
|
|
GetInputOutputInfo(encoder_, &encoder_in_names_, &encoder_out_names_);
|
|
|
|
LOG(INFO) << "Onnx CTC:";
|
|
|
|
GetInputOutputInfo(ctc_, &ctc_in_names_, &ctc_out_names_);
|
|
|
|
LOG(INFO) << "Onnx Rescore:";
|
|
|
|
GetInputOutputInfo(rescore_, &rescore_in_names_, &rescore_out_names_);
|
|
|
|
}
|
|
|
|
|
|
|
|
U2OnnxNnet::U2OnnxNnet(const ModelOptions& opts) : opts_(opts) {
|
|
|
|
LoadModel(opts_.model_path);
|
|
|
|
}
|
|
|
|
|
|
|
|
// shallow copy
|
|
|
|
U2OnnxNnet::U2OnnxNnet(const U2OnnxNnet& other) {
|
|
|
|
// metadatas
|
|
|
|
encoder_output_size_ = other.encoder_output_size_;
|
|
|
|
num_blocks_ = other.num_blocks_;
|
|
|
|
head_ = other.head_;
|
|
|
|
cnn_module_kernel_ = other.cnn_module_kernel_;
|
|
|
|
right_context_ = other.right_context_;
|
|
|
|
subsampling_rate_ = other.subsampling_rate_;
|
|
|
|
sos_ = other.sos_;
|
|
|
|
eos_ = other.eos_;
|
|
|
|
is_bidecoder_ = other.is_bidecoder_;
|
|
|
|
chunk_size_ = other.chunk_size_;
|
|
|
|
num_left_chunks_ = other.num_left_chunks_;
|
|
|
|
offset_ = other.offset_;
|
|
|
|
|
|
|
|
// session
|
|
|
|
encoder_ = other.encoder_;
|
|
|
|
ctc_ = other.ctc_;
|
|
|
|
rescore_ = other.rescore_;
|
|
|
|
|
|
|
|
// node names
|
|
|
|
encoder_in_names_ = other.encoder_in_names_;
|
|
|
|
encoder_out_names_ = other.encoder_out_names_;
|
|
|
|
ctc_in_names_ = other.ctc_in_names_;
|
|
|
|
ctc_out_names_ = other.ctc_out_names_;
|
|
|
|
rescore_in_names_ = other.rescore_in_names_;
|
|
|
|
rescore_out_names_ = other.rescore_out_names_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void U2OnnxNnet::GetInputOutputInfo(const std::shared_ptr<fastdeploy::Runtime>& runtime,
|
|
|
|
std::vector<std::string>* in_names, std::vector<std::string>* out_names) {
|
|
|
|
std::vector<fastdeploy::TensorInfo> inputs_info = runtime->GetInputInfos();
|
|
|
|
(*in_names).resize(inputs_info.size());
|
|
|
|
for (int i = 0; i < inputs_info.size(); ++i){
|
|
|
|
fastdeploy::TensorInfo info = inputs_info[i];
|
|
|
|
|
|
|
|
std::stringstream shape;
|
|
|
|
for(int j = 0; j < info.shape.size(); ++j){
|
|
|
|
shape << info.shape[j];
|
|
|
|
shape << " ";
|
|
|
|
}
|
|
|
|
LOG(INFO) << "\tInput " << i << " : name=" << info.name << " type=" << info.dtype
|
|
|
|
<< " dims=" << shape.str();
|
|
|
|
(*in_names)[i] = info.name;
|
|
|
|
}
|
|
|
|
std::vector<fastdeploy::TensorInfo> outputs_info = runtime->GetOutputInfos();
|
|
|
|
(*out_names).resize(outputs_info.size());
|
|
|
|
for (int i = 0; i < outputs_info.size(); ++i){
|
|
|
|
fastdeploy::TensorInfo info = outputs_info[i];
|
|
|
|
|
|
|
|
std::stringstream shape;
|
|
|
|
for(int j = 0; j < info.shape.size(); ++j){
|
|
|
|
shape << info.shape[j];
|
|
|
|
shape << " ";
|
|
|
|
}
|
|
|
|
LOG(INFO) << "\tOutput " << i << " : name=" << info.name << " type=" << info.dtype
|
|
|
|
<< " dims=" << shape.str();
|
|
|
|
(*out_names)[i] = info.name;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<NnetBase> U2OnnxNnet::Clone() const {
|
|
|
|
auto asr_model = std::make_shared<U2OnnxNnet>(*this);
|
|
|
|
// reset inner state for new decoding
|
|
|
|
asr_model->Reset();
|
|
|
|
return asr_model;
|
|
|
|
}
|
|
|
|
|
|
|
|
void U2OnnxNnet::Reset() {
|
|
|
|
offset_ = 0;
|
|
|
|
encoder_outs_.clear();
|
|
|
|
cached_feats_.clear();
|
|
|
|
// Reset att_cache
|
|
|
|
if (num_left_chunks_ > 0) {
|
|
|
|
int required_cache_size = chunk_size_ * num_left_chunks_;
|
|
|
|
offset_ = required_cache_size;
|
|
|
|
att_cache_.resize(num_blocks_ * head_ * required_cache_size *
|
|
|
|
encoder_output_size_ / head_ * 2,
|
|
|
|
0.0);
|
|
|
|
const std::vector<int64_t> att_cache_shape = {num_blocks_, head_, required_cache_size,
|
|
|
|
encoder_output_size_ / head_ * 2};
|
|
|
|
att_cache_ort_.SetExternalData(att_cache_shape, fastdeploy::FDDataType::FP32, att_cache_.data());
|
|
|
|
} else {
|
|
|
|
att_cache_.resize(0, 0.0);
|
|
|
|
const std::vector<int64_t> att_cache_shape = {num_blocks_, head_, 0,
|
|
|
|
encoder_output_size_ / head_ * 2};
|
|
|
|
att_cache_ort_.SetExternalData(att_cache_shape, fastdeploy::FDDataType::FP32, att_cache_.data());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reset cnn_cache
|
|
|
|
cnn_cache_.resize(
|
|
|
|
num_blocks_ * encoder_output_size_ * (cnn_module_kernel_ - 1), 0.0);
|
|
|
|
const std::vector<int64_t> cnn_cache_shape = {num_blocks_, 1, encoder_output_size_,
|
|
|
|
cnn_module_kernel_ - 1};
|
|
|
|
cnn_cache_ort_.SetExternalData(cnn_cache_shape, fastdeploy::FDDataType::FP32, cnn_cache_.data());
|
|
|
|
}
|
|
|
|
|
|
|
|
void U2OnnxNnet::FeedForward(const std::vector<BaseFloat>& features,
|
|
|
|
const int32& feature_dim,
|
|
|
|
NnetOut* out) {
|
|
|
|
kaldi::Timer timer;
|
|
|
|
|
|
|
|
std::vector<kaldi::BaseFloat> ctc_probs;
|
|
|
|
ForwardEncoderChunkImpl(
|
|
|
|
features, feature_dim, &out->logprobs, &out->vocab_dim);
|
|
|
|
VLOG(1) << "FeedForward cost: " << timer.Elapsed() << " sec. "
|
|
|
|
<< features.size() / feature_dim << " frames.";
|
|
|
|
}
|
|
|
|
|
|
|
|
void U2OnnxNnet::ForwardEncoderChunkImpl(
|
|
|
|
const std::vector<kaldi::BaseFloat>& chunk_feats,
|
|
|
|
const int32& feat_dim,
|
|
|
|
std::vector<kaldi::BaseFloat>* out_prob,
|
|
|
|
int32* vocab_dim) {
|
|
|
|
|
|
|
|
// 1. Prepare onnx required data, splice cached_feature_ and chunk_feats
|
|
|
|
// chunk
|
|
|
|
int num_frames = chunk_feats.size() / feat_dim;
|
|
|
|
VLOG(3) << "num_frames: " << num_frames;
|
|
|
|
VLOG(3) << "feat_dim: " << feat_dim;
|
|
|
|
const int feature_dim = feat_dim;
|
|
|
|
std::vector<float> feats;
|
|
|
|
feats.insert(feats.end(), chunk_feats.begin(), chunk_feats.end());
|
|
|
|
fastdeploy::FDTensor feats_ort;
|
|
|
|
const std::vector<int64_t> feats_shape = {1, num_frames, feature_dim};
|
|
|
|
feats_ort.SetExternalData(feats_shape, fastdeploy::FDDataType::FP32, feats.data());
|
|
|
|
|
|
|
|
// offset
|
|
|
|
int64_t offset_int64 = static_cast<int64_t>(offset_);
|
|
|
|
fastdeploy::FDTensor offset_ort;
|
|
|
|
offset_ort.SetExternalData({}, fastdeploy::FDDataType::INT64, &offset_int64);
|
|
|
|
|
|
|
|
// required_cache_size
|
|
|
|
int64_t required_cache_size = chunk_size_ * num_left_chunks_;
|
|
|
|
fastdeploy::FDTensor required_cache_size_ort("");
|
|
|
|
required_cache_size_ort.SetExternalData({}, fastdeploy::FDDataType::INT64, &required_cache_size);
|
|
|
|
|
|
|
|
// att_mask
|
|
|
|
fastdeploy::FDTensor att_mask_ort;
|
|
|
|
std::vector<uint8_t> att_mask(required_cache_size + chunk_size_, 1);
|
|
|
|
if (num_left_chunks_ > 0) {
|
|
|
|
int chunk_idx = offset_ / chunk_size_ - num_left_chunks_;
|
|
|
|
if (chunk_idx < num_left_chunks_) {
|
|
|
|
for (int i = 0; i < (num_left_chunks_ - chunk_idx) * chunk_size_; ++i) {
|
|
|
|
att_mask[i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const std::vector<int64_t> att_mask_shape = {1, 1, required_cache_size + chunk_size_};
|
|
|
|
att_mask_ort.SetExternalData(att_mask_shape, fastdeploy::FDDataType::BOOL, reinterpret_cast<bool*>(att_mask.data()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// 2. Encoder chunk forward
|
|
|
|
std::vector<fastdeploy::FDTensor> inputs(encoder_in_names_.size());
|
|
|
|
for (int i = 0; i < encoder_in_names_.size(); ++i) {
|
|
|
|
std::string name = encoder_in_names_[i];
|
|
|
|
if (!strcmp(name.data(), "chunk")) {
|
|
|
|
inputs[i] = std::move(feats_ort);
|
|
|
|
inputs[i].name = "chunk";
|
|
|
|
} else if (!strcmp(name.data(), "offset")) {
|
|
|
|
inputs[i] = std::move(offset_ort);
|
|
|
|
inputs[i].name = "offset";
|
|
|
|
} else if (!strcmp(name.data(), "required_cache_size")) {
|
|
|
|
inputs[i] = std::move(required_cache_size_ort);
|
|
|
|
inputs[i].name = "required_cache_size";
|
|
|
|
} else if (!strcmp(name.data(), "att_cache")) {
|
|
|
|
inputs[i] = std::move(att_cache_ort_);
|
|
|
|
inputs[i].name = "att_cache";
|
|
|
|
} else if (!strcmp(name.data(), "cnn_cache")) {
|
|
|
|
inputs[i] = std::move(cnn_cache_ort_);
|
|
|
|
inputs[i].name = "cnn_cache";
|
|
|
|
} else if (!strcmp(name.data(), "att_mask")) {
|
|
|
|
inputs[i] = std::move(att_mask_ort);
|
|
|
|
inputs[i].name = "att_mask";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<fastdeploy::FDTensor> ort_outputs;
|
|
|
|
assert(encoder_->Infer(inputs, &ort_outputs));
|
|
|
|
|
|
|
|
offset_ += static_cast<int>(ort_outputs[0].shape[1]);
|
|
|
|
att_cache_ort_ = std::move(ort_outputs[1]);
|
|
|
|
cnn_cache_ort_ = std::move(ort_outputs[2]);
|
|
|
|
|
|
|
|
std::vector<fastdeploy::FDTensor> ctc_inputs;
|
|
|
|
ctc_inputs.emplace_back(std::move(ort_outputs[0]));
|
|
|
|
// ctc_inputs[0] = std::move(ort_outputs[0]);
|
|
|
|
ctc_inputs[0].name = ctc_in_names_[0];
|
|
|
|
|
|
|
|
std::vector<fastdeploy::FDTensor> ctc_ort_outputs;
|
|
|
|
assert(ctc_->Infer(ctc_inputs, &ctc_ort_outputs));
|
|
|
|
encoder_outs_.emplace_back(std::move(ctc_inputs[0])); // *****
|
|
|
|
|
|
|
|
float* logp_data = reinterpret_cast<float*>(ctc_ort_outputs[0].Data());
|
|
|
|
|
|
|
|
// Copy to output, (B=1,T,D)
|
|
|
|
std::vector<int64_t> ctc_log_probs_shape = ctc_ort_outputs[0].shape;
|
|
|
|
CHECK_EQ(ctc_log_probs_shape.size(), 3);
|
|
|
|
int B = ctc_log_probs_shape[0];
|
|
|
|
CHECK_EQ(B, 1);
|
|
|
|
int T = ctc_log_probs_shape[1];
|
|
|
|
int D = ctc_log_probs_shape[2];
|
|
|
|
*vocab_dim = D;
|
|
|
|
|
|
|
|
out_prob->resize(T * D);
|
|
|
|
std::memcpy(
|
|
|
|
out_prob->data(), logp_data, T * D * sizeof(kaldi::BaseFloat));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
float U2OnnxNnet::ComputeAttentionScore(const float* prob,
|
|
|
|
const std::vector<int>& hyp, int eos,
|
|
|
|
int decode_out_len) {
|
|
|
|
float score = 0.0f;
|
|
|
|
for (size_t j = 0; j < hyp.size(); ++j) {
|
|
|
|
score += *(prob + j * decode_out_len + hyp[j]);
|
|
|
|
}
|
|
|
|
score += *(prob + hyp.size() * decode_out_len + eos);
|
|
|
|
return score;
|
|
|
|
}
|
|
|
|
|
|
|
|
void U2OnnxNnet::AttentionRescoring(const std::vector<std::vector<int>>& hyps,
|
|
|
|
float reverse_weight,
|
|
|
|
std::vector<float>* rescoring_score) {
|
|
|
|
CHECK(rescoring_score != nullptr);
|
|
|
|
int num_hyps = hyps.size();
|
|
|
|
rescoring_score->resize(num_hyps, 0.0f);
|
|
|
|
|
|
|
|
if (num_hyps == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// No encoder output
|
|
|
|
if (encoder_outs_.size() == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int64_t> hyps_lens;
|
|
|
|
int max_hyps_len = 0;
|
|
|
|
for (size_t i = 0; i < num_hyps; ++i) {
|
|
|
|
int length = hyps[i].size() + 1;
|
|
|
|
max_hyps_len = std::max(length, max_hyps_len);
|
|
|
|
hyps_lens.emplace_back(static_cast<int64_t>(length));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<float> rescore_input;
|
|
|
|
int encoder_len = 0;
|
|
|
|
for (int i = 0; i < encoder_outs_.size(); i++) {
|
|
|
|
float* encoder_outs_data = reinterpret_cast<float*>(encoder_outs_[i].Data());
|
|
|
|
for (int j = 0; j < encoder_outs_[i].Numel(); j++) {
|
|
|
|
rescore_input.emplace_back(encoder_outs_data[j]);
|
|
|
|
}
|
|
|
|
encoder_len += encoder_outs_[i].shape[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int64_t> hyps_pad;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < num_hyps; ++i) {
|
|
|
|
const std::vector<int>& hyp = hyps[i];
|
|
|
|
hyps_pad.emplace_back(sos_);
|
|
|
|
size_t j = 0;
|
|
|
|
for (; j < hyp.size(); ++j) {
|
|
|
|
hyps_pad.emplace_back(hyp[j]);
|
|
|
|
}
|
|
|
|
if (j == max_hyps_len - 1) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
for (; j < max_hyps_len - 1; ++j) {
|
|
|
|
hyps_pad.emplace_back(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const std::vector<int64_t> hyps_pad_shape = {num_hyps, max_hyps_len};
|
|
|
|
const std::vector<int64_t> hyps_lens_shape = {num_hyps};
|
|
|
|
const std::vector<int64_t> decode_input_shape = {1, encoder_len, encoder_output_size_};
|
|
|
|
|
|
|
|
fastdeploy::FDTensor hyps_pad_tensor_;
|
|
|
|
hyps_pad_tensor_.SetExternalData(hyps_pad_shape, fastdeploy::FDDataType::INT64, hyps_pad.data());
|
|
|
|
fastdeploy::FDTensor hyps_lens_tensor_;
|
|
|
|
hyps_lens_tensor_.SetExternalData(hyps_lens_shape, fastdeploy::FDDataType::INT64, hyps_lens.data());
|
|
|
|
fastdeploy::FDTensor decode_input_tensor_;
|
|
|
|
decode_input_tensor_.SetExternalData(decode_input_shape, fastdeploy::FDDataType::FP32, rescore_input.data());
|
|
|
|
|
|
|
|
std::vector<fastdeploy::FDTensor> rescore_inputs(3);
|
|
|
|
|
|
|
|
rescore_inputs[0] = std::move(hyps_pad_tensor_);
|
|
|
|
rescore_inputs[0].name = rescore_in_names_[0];
|
|
|
|
rescore_inputs[1] = std::move(hyps_lens_tensor_);
|
|
|
|
rescore_inputs[1].name = rescore_in_names_[1];
|
|
|
|
rescore_inputs[2] = std::move(decode_input_tensor_);
|
|
|
|
rescore_inputs[2].name = rescore_in_names_[2];
|
|
|
|
|
|
|
|
std::vector<fastdeploy::FDTensor> rescore_outputs;
|
|
|
|
assert(rescore_->Infer(rescore_inputs, &rescore_outputs));
|
|
|
|
|
|
|
|
float* decoder_outs_data = reinterpret_cast<float*>(rescore_outputs[0].Data());
|
|
|
|
float* r_decoder_outs_data = reinterpret_cast<float*>(rescore_outputs[1].Data());
|
|
|
|
|
|
|
|
int decode_out_len = rescore_outputs[0].shape[2];
|
|
|
|
|
|
|
|
for (size_t i = 0; i < num_hyps; ++i) {
|
|
|
|
const std::vector<int>& hyp = hyps[i];
|
|
|
|
float score = 0.0f;
|
|
|
|
// left to right decoder score
|
|
|
|
score = ComputeAttentionScore(
|
|
|
|
decoder_outs_data + max_hyps_len * decode_out_len * i, hyp, eos_,
|
|
|
|
decode_out_len);
|
|
|
|
// Optional: Used for right to left score
|
|
|
|
float r_score = 0.0f;
|
|
|
|
if (is_bidecoder_ && reverse_weight > 0) {
|
|
|
|
std::vector<int> r_hyp(hyp.size());
|
|
|
|
std::reverse_copy(hyp.begin(), hyp.end(), r_hyp.begin());
|
|
|
|
// right to left decoder score
|
|
|
|
r_score = ComputeAttentionScore(
|
|
|
|
r_decoder_outs_data + max_hyps_len * decode_out_len * i, r_hyp, eos_,
|
|
|
|
decode_out_len);
|
|
|
|
}
|
|
|
|
// combined left-to-right and right-to-left score
|
|
|
|
(*rescoring_score)[i] =
|
|
|
|
score * (1 - reverse_weight) + r_score * reverse_weight;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void U2OnnxNnet::EncoderOuts(
|
|
|
|
std::vector<std::vector<kaldi::BaseFloat>>* encoder_out) const {
|
|
|
|
}
|
|
|
|
|
|
|
|
} //namepace ppspeech
|