You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/modules/diffusion.py

323 lines
13 KiB

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Diffusion denoising related modules for paddle"""
from typing import Callable
from typing import Optional
from typing import Tuple
import numpy as np
import paddle
import ppdiffusers
from paddle import nn
from ppdiffusers.schedulers import DDPMScheduler
class GaussianDiffusion(nn.Layer):
"""Common Gaussian Diffusion Denoising Model Module
Args:
denoiser (Layer, optional):
The model used for denoising noises.
num_train_timesteps (int, optional):
The number of timesteps between the noise and the real during training, by default 1000.
beta_start (float, optional):
beta start parameter for the scheduler, by default 0.0001.
beta_end (float, optional):
beta end parameter for the scheduler, by default 0.0001.
beta_schedule (str, optional):
beta schedule parameter for the scheduler, by default 'squaredcos_cap_v2' (cosine schedule).
num_max_timesteps (int, optional):
The max timestep transition from real to noise, by default None.
stretch (bool, optional):
Whether to stretch before diffusion, by defalut True.
min_values: (paddle.Tensor):
The minimum value of the feature to stretch.
max_values: (paddle.Tensor):
The maximum value of the feature to stretch.
Examples:
>>> import paddle
>>> import paddle.nn.functional as F
>>> from tqdm import tqdm
>>>
>>> denoiser = WaveNetDenoiser()
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=1000, num_max_timesteps=100)
>>> x = paddle.ones([4, 80, 192]) # [B, mel_ch, T] # real mel input
>>> c = paddle.randn([4, 256, 192]) # [B, fs2_encoder_out_ch, T] # fastspeech2 encoder output
>>> loss = F.mse_loss(*diffusion(x, c))
>>> loss.backward()
>>> print('MSE Loss:', loss.item())
MSE Loss: 1.6669728755950928
>>> def create_progress_callback():
>>> pbar = None
>>> def callback(index, timestep, num_timesteps, sample):
>>> nonlocal pbar
>>> if pbar is None:
>>> pbar = tqdm(total=num_timesteps)
>>> pbar.update(index)
>>> pbar.update()
>>>
>>> return callback
>>>
>>> # ds=1000, K_step=60, scheduler=ddpm, from aux fs2 mel output
>>> ds = 1000
>>> infer_steps = 1000
>>> K_step = 60
>>> scheduler_type = 'ddpm'
>>> x_in = x
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=ds, num_max_timesteps=K_step)
>>> with paddle.no_grad():
>>> sample = diffusion.inference(
>>> paddle.randn(x.shape), c, ref_x=x_in,
>>> num_inference_steps=infer_steps,
>>> scheduler_type=scheduler_type,
>>> callback=create_progress_callback())
100%|| 60/60 [00:03<00:00, 18.36it/s]
>>>
>>> # ds=100, K_step=100, scheduler=ddpm, from gaussian noise
>>> ds = 100
>>> infer_steps = 100
>>> K_step = 100
>>> scheduler_type = 'ddpm'
>>> x_in = None
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=ds, num_max_timesteps=K_step)
>>> with paddle.no_grad():
>>> sample = diffusion.inference(
>>> paddle.randn(x.shape), c, ref_x=x_in,
>>> num_inference_steps=infer_steps,
>>> scheduler_type=scheduler_type,
>>> callback=create_progress_callback())
100%|| 100/100 [00:05<00:00, 18.29it/s]
>>>
>>> # ds=1000, K_step=1000, scheduler=pndm, infer_step=25, from gaussian noise
>>> ds = 1000
>>> infer_steps = 25
>>> K_step = 1000
>>> scheduler_type = 'pndm'
>>> x_in = None
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=ds, num_max_timesteps=K_step)
>>> with paddle.no_grad():
>>> sample = diffusion.inference(
>>> paddle.randn(x.shape), c, ref_x=x_in,
>>> num_inference_steps=infer_steps,
>>> scheduler_type=scheduler_type,
>>> callback=create_progress_callback())
100%|| 34/34 [00:01<00:00, 19.75it/s]
>>>
>>> # ds=1000, K_step=100, scheduler=pndm, infer_step=50, from aux fs2 mel output
>>> ds = 1000
>>> infer_steps = 50
>>> K_step = 100
>>> scheduler_type = 'pndm'
>>> x_in = x
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=ds, num_max_timesteps=K_step)
>>> with paddle.no_grad():
>>> sample = diffusion.inference(
>>> paddle.randn(x.shape), c, ref_x=x_in,
>>> num_inference_steps=infer_steps,
>>> scheduler_type=scheduler_type,
>>> callback=create_progress_callback())
100%|| 14/14 [00:00<00:00, 23.80it/s]
"""
def __init__(
self,
denoiser: nn.Layer,
num_train_timesteps: Optional[int]=1000,
beta_start: Optional[float]=0.0001,
beta_end: Optional[float]=0.02,
beta_schedule: Optional[str]="squaredcos_cap_v2",
num_max_timesteps: Optional[int]=None,
stretch: bool=True,
min_values: paddle.Tensor=None,
max_values: paddle.Tensor=None, ):
super().__init__()
self.num_train_timesteps = num_train_timesteps
self.beta_start = beta_start
self.beta_end = beta_end
self.beta_schedule = beta_schedule
self.denoiser = denoiser
self.noise_scheduler = DDPMScheduler(
num_train_timesteps=num_train_timesteps,
beta_start=beta_start,
beta_end=beta_end,
beta_schedule=beta_schedule)
self.num_max_timesteps = num_max_timesteps
self.stretch = stretch
self.min_values = min_values
self.max_values = max_values
def norm_spec(self, x):
"""
Linearly map x to [-1, 1]
Args:
x: [B, T, N]
"""
return (x - self.min_values) / (self.max_values - self.min_values
) * 2 - 1
def denorm_spec(self, x):
return (x + 1) / 2 * (self.max_values - self.min_values
) + self.min_values
def forward(self, x: paddle.Tensor, cond: Optional[paddle.Tensor]=None
) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Generate random timesteps noised x.
Args:
x (Tensor):
The input for adding noises.
cond (Tensor, optional):
Conditional input for compute noises.
Returns:
y (Tensor):
The output with noises added in.
target (Tensor):
The noises which is added to the input.
"""
if self.stretch:
x = x.transpose((0, 2, 1))
x = self.norm_spec(x)
x = x.transpose((0, 2, 1))
noise_scheduler = self.noise_scheduler
# Sample noise that we'll add to the mel-spectrograms
target = noise = paddle.randn(x.shape)
# Sample a random timestep for each mel-spectrogram
num_timesteps = self.num_train_timesteps
if self.num_max_timesteps is not None:
num_timesteps = self.num_max_timesteps
timesteps = paddle.randint(0, num_timesteps, (x.shape[0], ))
# Add noise to the clean mel-spectrograms according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(x, noise, timesteps)
y = self.denoiser(noisy_images, timesteps, cond)
# then compute loss use output y and noisy target for prediction_type == "epsilon"
return y, target
def inference(self,
noise: paddle.Tensor,
cond: Optional[paddle.Tensor]=None,
ref_x: Optional[paddle.Tensor]=None,
num_inference_steps: Optional[int]=1000,
strength: Optional[float]=None,
scheduler_type: Optional[str]="ddpm",
clip_noise: Optional[bool]=False,
clip_noise_range: Optional[Tuple[float, float]]=(-1, 1),
callback: Optional[Callable[[int, int, int, paddle.Tensor],
None]]=None,
callback_steps: Optional[int]=1):
"""Denoising input from noises. Refer to ppdiffusers img2img pipeline.
Args:
noise (Tensor):
The input tensor as a starting point for denoising.
cond (Tensor, optional):
Conditional input for compute noises. (N, C_aux, T)
ref_x (Tensor, optional):
The real output for the denoising process to refer.
num_inference_steps (int, optional):
The number of timesteps between the noise and the real during inference, by default 1000.
strength (float, optional):
Mixing strength of ref_x with noise. The larger the value, the stronger the noise.
Range [0,1], by default None.
scheduler_type (str, optional):
Noise scheduler for generate noises.
Choose a great scheduler can skip many denoising step, by default 'ddpm'.
only support 'ddpm' now !
clip_noise (bool, optional):
Whether to clip each denoised output, by default True.
clip_noise_range (tuple, optional):
denoised output min and max value range after clip, by default (-1, 1).
callback (Callable[[int,int,int,Tensor], None], optional):
Callback function during denoising steps.
Args:
index (int):
Current denoising index.
timestep (int):
Current denoising timestep.
num_timesteps (int):
Number of the denoising timesteps.
denoised_output (Tensor):
Current intermediate result produced during denoising.
callback_steps (int, optional):
The step to call the callback function.
Returns:
denoised_output (Tensor):
The denoised output tensor.
"""
scheduler_cls = None
for clsname in dir(ppdiffusers.schedulers):
if clsname.lower() == scheduler_type + "scheduler":
scheduler_cls = getattr(ppdiffusers.schedulers, clsname)
break
if scheduler_cls is None:
raise ValueError(f"No such scheduler type named {scheduler_type}")
scheduler = scheduler_cls(
num_train_timesteps=self.num_train_timesteps,
beta_start=self.beta_start,
beta_end=self.beta_end,
beta_schedule=self.beta_schedule)
# set timesteps
scheduler.set_timesteps(num_inference_steps)
noisy_input = noise
if self.stretch and ref_x is not None:
ref_x = ref_x.transpose((0, 2, 1))
ref_x = self.norm_spec(ref_x)
ref_x = ref_x.transpose((0, 2, 1))
# for ddpm
timesteps = paddle.to_tensor(
np.flipud(np.arange(num_inference_steps)))
noisy_input = scheduler.add_noise(ref_x, noise, timesteps[0])
denoised_output = noisy_input
if clip_noise:
n_min, n_max = clip_noise_range
denoised_output = paddle.clip(denoised_output, n_min, n_max)
for i, t in enumerate(timesteps):
denoised_output = scheduler.scale_model_input(denoised_output, t)
noise_pred = self.denoiser(denoised_output, t, cond)
# compute the previous noisy sample x_t -> x_t-1
denoised_output = scheduler.step(noise_pred, t,
denoised_output).prev_sample
if clip_noise:
denoised_output = paddle.clip(denoised_output, n_min, n_max)
if self.stretch:
denoised_output = denoised_output.transpose((0, 2, 1))
denoised_output = self.denorm_spec(denoised_output)
denoised_output = denoised_output.transpose((0, 2, 1))
return denoised_output