You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
468 lines
18 KiB
468 lines
18 KiB
2 years ago
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Diffusion denoising related modules for paddle"""
|
||
|
import math
|
||
|
from typing import Callable
|
||
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
|
||
|
import paddle
|
||
|
import ppdiffusers
|
||
|
from paddle import nn
|
||
|
from ppdiffusers.models.embeddings import Timesteps
|
||
|
from ppdiffusers.schedulers import DDPMScheduler
|
||
|
|
||
|
from paddlespeech.t2s.modules.nets_utils import initialize
|
||
|
from paddlespeech.t2s.modules.residual_block import WaveNetResidualBlock
|
||
|
|
||
|
|
||
|
class WaveNetDenoiser(nn.Layer):
|
||
|
"""A Mel-Spectrogram Denoiser modified from WaveNet
|
||
|
|
||
|
Args:
|
||
|
in_channels (int, optional):
|
||
|
Number of channels of the input mel-spectrogram, by default 80
|
||
|
out_channels (int, optional):
|
||
|
Number of channels of the output mel-spectrogram, by default 80
|
||
|
kernel_size (int, optional):
|
||
|
Kernel size of the residual blocks inside, by default 3
|
||
|
layers (int, optional):
|
||
|
Number of residual blocks inside, by default 20
|
||
|
stacks (int, optional):
|
||
|
The number of groups to split the residual blocks into, by default 4
|
||
|
Within each group, the dilation of the residual block grows exponentially.
|
||
|
residual_channels (int, optional):
|
||
|
Residual channel of the residual blocks, by default 256
|
||
|
gate_channels (int, optional):
|
||
|
Gate channel of the residual blocks, by default 512
|
||
|
skip_channels (int, optional):
|
||
|
Skip channel of the residual blocks, by default 256
|
||
|
aux_channels (int, optional):
|
||
|
Auxiliary channel of the residual blocks, by default 256
|
||
|
dropout (float, optional):
|
||
|
Dropout of the residual blocks, by default 0.
|
||
|
bias (bool, optional):
|
||
|
Whether to use bias in residual blocks, by default True
|
||
|
use_weight_norm (bool, optional):
|
||
|
Whether to use weight norm in all convolutions, by default False
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int=80,
|
||
|
out_channels: int=80,
|
||
|
kernel_size: int=3,
|
||
|
layers: int=20,
|
||
|
stacks: int=4,
|
||
|
residual_channels: int=256,
|
||
|
gate_channels: int=512,
|
||
|
skip_channels: int=256,
|
||
|
aux_channels: int=256,
|
||
|
dropout: float=0.,
|
||
|
bias: bool=True,
|
||
|
use_weight_norm: bool=False,
|
||
|
init_type: str="kaiming_uniform", ):
|
||
|
super().__init__()
|
||
|
|
||
|
# initialize parameters
|
||
|
initialize(self, init_type)
|
||
|
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.aux_channels = aux_channels
|
||
|
self.layers = layers
|
||
|
self.stacks = stacks
|
||
|
self.kernel_size = kernel_size
|
||
|
|
||
|
assert layers % stacks == 0
|
||
|
layers_per_stack = layers // stacks
|
||
|
|
||
|
self.first_t_emb = nn.Sequential(
|
||
|
Timesteps(
|
||
|
residual_channels,
|
||
|
flip_sin_to_cos=False,
|
||
|
downscale_freq_shift=1),
|
||
|
nn.Linear(residual_channels, residual_channels * 4),
|
||
|
nn.Mish(), nn.Linear(residual_channels * 4, residual_channels))
|
||
|
self.t_emb_layers = nn.LayerList([
|
||
|
nn.Linear(residual_channels, residual_channels)
|
||
|
for _ in range(layers)
|
||
|
])
|
||
|
|
||
|
self.first_conv = nn.Conv1D(
|
||
|
in_channels, residual_channels, 1, bias_attr=True)
|
||
|
self.first_act = nn.ReLU()
|
||
|
|
||
|
self.conv_layers = nn.LayerList()
|
||
|
for layer in range(layers):
|
||
|
dilation = 2**(layer % layers_per_stack)
|
||
|
conv = WaveNetResidualBlock(
|
||
|
kernel_size=kernel_size,
|
||
|
residual_channels=residual_channels,
|
||
|
gate_channels=gate_channels,
|
||
|
skip_channels=skip_channels,
|
||
|
aux_channels=aux_channels,
|
||
|
dilation=dilation,
|
||
|
dropout=dropout,
|
||
|
bias=bias)
|
||
|
self.conv_layers.append(conv)
|
||
|
|
||
|
self.last_conv_layers = nn.Sequential(nn.ReLU(),
|
||
|
nn.Conv1D(
|
||
|
skip_channels,
|
||
|
skip_channels,
|
||
|
1,
|
||
|
bias_attr=True),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv1D(
|
||
|
skip_channels,
|
||
|
out_channels,
|
||
|
1,
|
||
|
bias_attr=True))
|
||
|
|
||
|
if use_weight_norm:
|
||
|
self.apply_weight_norm()
|
||
|
|
||
|
def forward(self, x, t, c):
|
||
|
"""Denoise mel-spectrogram.
|
||
|
|
||
|
Args:
|
||
|
x(Tensor):
|
||
|
Shape (N, C_in, T), The input mel-spectrogram.
|
||
|
t(Tensor):
|
||
|
Shape (N), The timestep input.
|
||
|
c(Tensor):
|
||
|
Shape (N, C_aux, T'). The auxiliary input (e.g. fastspeech2 encoder output).
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Shape (N, C_out, T), the denoised mel-spectrogram.
|
||
|
"""
|
||
|
assert c.shape[-1] == x.shape[-1]
|
||
|
|
||
|
if t.shape[0] != x.shape[0]:
|
||
|
t = t.tile([x.shape[0]])
|
||
|
t_emb = self.first_t_emb(t)
|
||
|
t_embs = [
|
||
|
t_emb_layer(t_emb)[..., None] for t_emb_layer in self.t_emb_layers
|
||
|
]
|
||
|
|
||
|
x = self.first_conv(x)
|
||
|
x = self.first_act(x)
|
||
|
skips = 0
|
||
|
for f, t in zip(self.conv_layers, t_embs):
|
||
|
x = x + t
|
||
|
x, s = f(x, c)
|
||
|
skips += s
|
||
|
skips *= math.sqrt(1.0 / len(self.conv_layers))
|
||
|
|
||
|
x = self.last_conv_layers(skips)
|
||
|
return x
|
||
|
|
||
|
def apply_weight_norm(self):
|
||
|
"""Recursively apply weight normalization to all the Convolution layers
|
||
|
in the sublayers.
|
||
|
"""
|
||
|
|
||
|
def _apply_weight_norm(layer):
|
||
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
||
|
nn.utils.weight_norm(layer)
|
||
|
|
||
|
self.apply(_apply_weight_norm)
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
"""Recursively remove weight normalization from all the Convolution
|
||
|
layers in the sublayers.
|
||
|
"""
|
||
|
|
||
|
def _remove_weight_norm(layer):
|
||
|
try:
|
||
|
nn.utils.remove_weight_norm(layer)
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
self.apply(_remove_weight_norm)
|
||
|
|
||
|
|
||
|
class GaussianDiffusion(nn.Layer):
|
||
|
"""Common Gaussian Diffusion Denoising Model Module
|
||
|
|
||
|
Args:
|
||
|
denoiser (Layer, optional):
|
||
|
The model used for denoising noises.
|
||
|
In fact, the denoiser model performs the operation
|
||
|
of producing a output with more noises from the noisy input.
|
||
|
Then we use the diffusion algorithm to calculate
|
||
|
the input with the output to get the denoised result.
|
||
|
num_train_timesteps (int, optional):
|
||
|
The number of timesteps between the noise and the real during training, by default 1000.
|
||
|
beta_start (float, optional):
|
||
|
beta start parameter for the scheduler, by default 0.0001.
|
||
|
beta_end (float, optional):
|
||
|
beta end parameter for the scheduler, by default 0.0001.
|
||
|
beta_schedule (str, optional):
|
||
|
beta schedule parameter for the scheduler, by default 'squaredcos_cap_v2' (cosine schedule).
|
||
|
num_max_timesteps (int, optional):
|
||
|
The max timestep transition from real to noise, by default None.
|
||
|
|
||
|
Examples:
|
||
|
>>> import paddle
|
||
|
>>> import paddle.nn.functional as F
|
||
|
>>> from tqdm import tqdm
|
||
|
>>>
|
||
|
>>> denoiser = WaveNetDenoiser()
|
||
|
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=1000, num_max_timesteps=100)
|
||
|
>>> x = paddle.ones([4, 80, 192]) # [B, mel_ch, T] # real mel input
|
||
|
>>> c = paddle.randn([4, 256, 192]) # [B, fs2_encoder_out_ch, T] # fastspeech2 encoder output
|
||
|
>>> loss = F.mse_loss(*diffusion(x, c))
|
||
|
>>> loss.backward()
|
||
|
>>> print('MSE Loss:', loss.item())
|
||
|
MSE Loss: 1.6669728755950928
|
||
|
>>> def create_progress_callback():
|
||
|
>>> pbar = None
|
||
|
>>> def callback(index, timestep, num_timesteps, sample):
|
||
|
>>> nonlocal pbar
|
||
|
>>> if pbar is None:
|
||
|
>>> pbar = tqdm(total=num_timesteps-index)
|
||
|
>>> pbar.update()
|
||
|
>>>
|
||
|
>>> return callback
|
||
|
>>>
|
||
|
>>> # ds=1000, K_step=60, scheduler=ddpm, from aux fs2 mel output
|
||
|
>>> ds = 1000
|
||
|
>>> infer_steps = 1000
|
||
|
>>> K_step = 60
|
||
|
>>> scheduler_type = 'ddpm'
|
||
|
>>> x_in = x
|
||
|
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=ds, num_max_timesteps=K_step)
|
||
|
>>> with paddle.no_grad():
|
||
|
>>> sample = diffusion.inference(
|
||
|
>>> paddle.randn(x.shape), c, x,
|
||
|
>>> num_inference_steps=infer_steps,
|
||
|
>>> scheduler_type=scheduler_type,
|
||
|
>>> callback=create_progress_callback())
|
||
|
100%|█████| 60/60 [00:03<00:00, 18.36it/s]
|
||
|
>>>
|
||
|
>>> # ds=100, K_step=100, scheduler=ddpm, from gaussian noise
|
||
|
>>> ds = 100
|
||
|
>>> infer_steps = 100
|
||
|
>>> K_step = 100
|
||
|
>>> scheduler_type = 'ddpm'
|
||
|
>>> x_in = None
|
||
|
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=ds, num_max_timesteps=K_step)
|
||
|
>>> with paddle.no_grad():
|
||
|
>>> sample = diffusion.inference(
|
||
|
>>> paddle.randn(x.shape), c, x_in,
|
||
|
>>> num_inference_steps=infer_steps,
|
||
|
>>> scheduler_type=scheduler_type,
|
||
|
>>> callback=create_progress_callback())
|
||
|
100%|█████| 100/100 [00:05<00:00, 18.29it/s]
|
||
|
>>>
|
||
|
>>> # ds=1000, K_step=1000, scheduler=pndm, infer_step=25, from gaussian noise
|
||
|
>>> ds = 1000
|
||
|
>>> infer_steps = 25
|
||
|
>>> K_step = 1000
|
||
|
>>> scheduler_type = 'pndm'
|
||
|
>>> x_in = None
|
||
|
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=ds, num_max_timesteps=K_step)
|
||
|
>>> with paddle.no_grad():
|
||
|
>>> sample = diffusion.inference(
|
||
|
>>> paddle.randn(x.shape), c, None,
|
||
|
>>> num_inference_steps=infer_steps,
|
||
|
>>> scheduler_type=scheduler_type,
|
||
|
>>> callback=create_progress_callback())
|
||
|
100%|█████| 25/25 [00:01<00:00, 19.75it/s]
|
||
|
>>>
|
||
|
>>> # ds=1000, K_step=100, scheduler=pndm, infer_step=50, from aux fs2 mel output
|
||
|
>>> ds = 1000
|
||
|
>>> infer_steps = 50
|
||
|
>>> K_step = 100
|
||
|
>>> scheduler_type = 'pndm'
|
||
|
>>> x_in = x
|
||
|
>>> diffusion = GaussianDiffusion(denoiser, num_train_timesteps=ds, num_max_timesteps=K_step)
|
||
|
>>> with paddle.no_grad():
|
||
|
>>> sample = diffusion.inference(
|
||
|
>>> paddle.randn(x.shape), c, x,
|
||
|
>>> num_inference_steps=infer_steps,
|
||
|
>>> scheduler_type=scheduler_type,
|
||
|
>>> callback=create_progress_callback())
|
||
|
100%|█████| 5/5 [00:00<00:00, 23.80it/s]
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
denoiser: nn.Layer,
|
||
|
num_train_timesteps: Optional[int]=1000,
|
||
|
beta_start: Optional[float]=0.0001,
|
||
|
beta_end: Optional[float]=0.02,
|
||
|
beta_schedule: Optional[str]="squaredcos_cap_v2",
|
||
|
num_max_timesteps: Optional[int]=None):
|
||
|
super().__init__()
|
||
|
|
||
|
self.num_train_timesteps = num_train_timesteps
|
||
|
self.beta_start = beta_start
|
||
|
self.beta_end = beta_end
|
||
|
self.beta_schedule = beta_schedule
|
||
|
|
||
|
self.denoiser = denoiser
|
||
|
self.noise_scheduler = DDPMScheduler(
|
||
|
num_train_timesteps=num_train_timesteps,
|
||
|
beta_start=beta_start,
|
||
|
beta_end=beta_end,
|
||
|
beta_schedule=beta_schedule)
|
||
|
self.num_max_timesteps = num_max_timesteps
|
||
|
|
||
|
def forward(self, x: paddle.Tensor, cond: Optional[paddle.Tensor]=None
|
||
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
||
|
"""Generate random timesteps noised x.
|
||
|
|
||
|
Args:
|
||
|
x (Tensor):
|
||
|
The input for adding noises.
|
||
|
cond (Tensor, optional):
|
||
|
Conditional input for compute noises.
|
||
|
|
||
|
Returns:
|
||
|
y (Tensor):
|
||
|
The output with noises added in.
|
||
|
target (Tensor):
|
||
|
The noises which is added to the input.
|
||
|
|
||
|
"""
|
||
|
noise_scheduler = self.noise_scheduler
|
||
|
|
||
|
# Sample noise that we'll add to the mel-spectrograms
|
||
|
target = noise = paddle.randn(x.shape)
|
||
|
|
||
|
# Sample a random timestep for each mel-spectrogram
|
||
|
num_timesteps = self.num_train_timesteps
|
||
|
if self.num_max_timesteps is not None:
|
||
|
num_timesteps = self.num_max_timesteps
|
||
|
timesteps = paddle.randint(0, num_timesteps, (x.shape[0], ))
|
||
|
|
||
|
# Add noise to the clean mel-spectrograms according to the noise magnitude at each timestep
|
||
|
# (this is the forward diffusion process)
|
||
|
noisy_images = noise_scheduler.add_noise(x, noise, timesteps)
|
||
|
|
||
|
y = self.denoiser(noisy_images, timesteps, cond)
|
||
|
|
||
|
# then compute loss use output y and noisy target for prediction_type == "epsilon"
|
||
|
return y, target
|
||
|
|
||
|
def inference(self,
|
||
|
noise: paddle.Tensor,
|
||
|
cond: Optional[paddle.Tensor]=None,
|
||
|
ref_x: Optional[paddle.Tensor]=None,
|
||
|
num_inference_steps: Optional[int]=1000,
|
||
|
strength: Optional[float]=None,
|
||
|
scheduler_type: Optional[str]="ddpm",
|
||
|
callback: Optional[Callable[[int, int, int, paddle.Tensor],
|
||
|
None]]=None,
|
||
|
callback_steps: Optional[int]=1):
|
||
|
"""Denoising input from noises. Refer to ppdiffusers img2img pipeline.
|
||
|
|
||
|
Args:
|
||
|
noise (Tensor):
|
||
|
The input tensor as a starting point for denoising.
|
||
|
cond (Tensor, optional):
|
||
|
Conditional input for compute noises.
|
||
|
ref_x (Tensor, optional):
|
||
|
The real output for the denoising process to refer.
|
||
|
num_inference_steps (int, optional):
|
||
|
The number of timesteps between the noise and the real during inference, by default 1000.
|
||
|
strength (float, optional):
|
||
|
Mixing strength of ref_x with noise. The larger the value, the stronger the noise.
|
||
|
Range [0,1], by default None.
|
||
|
scheduler_type (str, optional):
|
||
|
Noise scheduler for generate noises.
|
||
|
Choose a great scheduler can skip many denoising step, by default 'ddpm'.
|
||
|
callback (Callable[[int,int,int,Tensor], None], optional):
|
||
|
Callback function during denoising steps.
|
||
|
|
||
|
Args:
|
||
|
index (int):
|
||
|
Current denoising index.
|
||
|
timestep (int):
|
||
|
Current denoising timestep.
|
||
|
num_timesteps (int):
|
||
|
Number of the denoising timesteps.
|
||
|
denoised_output (Tensor):
|
||
|
Current intermediate result produced during denoising.
|
||
|
|
||
|
callback_steps (int, optional):
|
||
|
The step to call the callback function.
|
||
|
|
||
|
Returns:
|
||
|
denoised_output (Tensor):
|
||
|
The denoised output tensor.
|
||
|
|
||
|
"""
|
||
|
scheduler_cls = None
|
||
|
for clsname in dir(ppdiffusers.schedulers):
|
||
|
if clsname.lower() == scheduler_type + "scheduler":
|
||
|
scheduler_cls = getattr(ppdiffusers.schedulers, clsname)
|
||
|
break
|
||
|
|
||
|
if scheduler_cls is None:
|
||
|
raise ValueError(f"No such scheduler type named {scheduler_type}")
|
||
|
|
||
|
scheduler = scheduler_cls(
|
||
|
num_train_timesteps=self.num_train_timesteps,
|
||
|
beta_start=self.beta_start,
|
||
|
beta_end=self.beta_end,
|
||
|
beta_schedule=self.beta_schedule)
|
||
|
|
||
|
# set timesteps
|
||
|
scheduler.set_timesteps(num_inference_steps)
|
||
|
|
||
|
# prepare first noise variables
|
||
|
noisy_input = noise
|
||
|
timesteps = scheduler.timesteps
|
||
|
if ref_x is not None:
|
||
|
init_timestep = None
|
||
|
if strength is None or strength < 0. or strength > 1.:
|
||
|
strength = None
|
||
|
if self.num_max_timesteps is not None:
|
||
|
strength = self.num_max_timesteps / self.num_train_timesteps
|
||
|
if strength is not None:
|
||
|
# get the original timestep using init_timestep
|
||
|
init_timestep = min(
|
||
|
int(num_inference_steps * strength), num_inference_steps)
|
||
|
t_start = max(num_inference_steps - init_timestep, 0)
|
||
|
timesteps = scheduler.timesteps[t_start:]
|
||
|
num_inference_steps = num_inference_steps - t_start
|
||
|
noisy_input = scheduler.add_noise(
|
||
|
ref_x, noise, timesteps[:1].tile([noise.shape[0]]))
|
||
|
|
||
|
# denoising loop
|
||
|
denoised_output = noisy_input
|
||
|
num_warmup_steps = len(
|
||
|
timesteps) - num_inference_steps * scheduler.order
|
||
|
for i, t in enumerate(timesteps):
|
||
|
denoised_output = scheduler.scale_model_input(denoised_output, t)
|
||
|
|
||
|
# predict the noise residual
|
||
|
noise_pred = self.denoiser(denoised_output, t, cond)
|
||
|
|
||
|
# compute the previous noisy sample x_t -> x_t-1
|
||
|
denoised_output = scheduler.step(noise_pred, t,
|
||
|
denoised_output).prev_sample
|
||
|
|
||
|
# call the callback, if provided
|
||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and
|
||
|
(i + 1) % scheduler.order == 0):
|
||
|
if callback is not None and i % callback_steps == 0:
|
||
|
callback(i, t, len(timesteps), denoised_output)
|
||
|
|
||
|
return denoised_output
|