|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from wenet(https://github.com/wenet-e2e/wenet)
|
|
|
|
"""U2 ASR Model
|
|
|
|
Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition
|
|
|
|
(https://arxiv.org/pdf/2012.05481.pdf)
|
|
|
|
"""
|
|
|
|
import time
|
|
|
|
from typing import Dict
|
|
|
|
from typing import Optional
|
|
|
|
from typing import Tuple
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from paddle import jit
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
from paddlespeech.audio.utils.tensor_utils import add_sos_eos
|
|
|
|
from paddlespeech.audio.utils.tensor_utils import th_accuracy
|
|
|
|
from paddlespeech.s2t.frontend.utility import IGNORE_ID
|
|
|
|
from paddlespeech.s2t.frontend.utility import load_cmvn
|
|
|
|
from paddlespeech.s2t.modules.cmvn import GlobalCMVN
|
|
|
|
from paddlespeech.s2t.modules.ctc import CTCDecoderBase
|
|
|
|
from paddlespeech.s2t.modules.decoder import TransformerDecoder
|
|
|
|
from paddlespeech.s2t.modules.encoder import ConformerEncoder
|
|
|
|
from paddlespeech.s2t.modules.encoder import TransformerEncoder
|
|
|
|
from paddlespeech.s2t.modules.loss import LabelSmoothingLoss
|
|
|
|
from paddlespeech.s2t.modules.mask import subsequent_mask
|
|
|
|
from paddlespeech.s2t.utils import checkpoint
|
|
|
|
from paddlespeech.s2t.utils import layer_tools
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
|
|
|
|
|
|
__all__ = ["U2STModel", "U2STInferModel"]
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
|
|
|
class U2STBaseModel(nn.Layer):
|
|
|
|
"""CTC-Attention hybrid Encoder-Decoder model"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
vocab_size: int,
|
|
|
|
encoder: TransformerEncoder,
|
|
|
|
st_decoder: TransformerDecoder,
|
|
|
|
decoder: TransformerDecoder=None,
|
|
|
|
ctc: CTCDecoderBase=None,
|
|
|
|
ctc_weight: float=0.0,
|
|
|
|
asr_weight: float=0.0,
|
|
|
|
ignore_id: int=IGNORE_ID,
|
|
|
|
lsm_weight: float=0.0,
|
|
|
|
length_normalized_loss: bool=False,
|
|
|
|
**kwargs):
|
|
|
|
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
# note that eos is the same as sos (equivalent ID)
|
|
|
|
self.sos = vocab_size - 1
|
|
|
|
self.eos = vocab_size - 1
|
|
|
|
self.vocab_size = vocab_size
|
|
|
|
self.ignore_id = ignore_id
|
|
|
|
self.ctc_weight = ctc_weight
|
|
|
|
self.asr_weight = asr_weight
|
|
|
|
|
|
|
|
self.encoder = encoder
|
|
|
|
self.st_decoder = st_decoder
|
|
|
|
self.decoder = decoder
|
|
|
|
self.ctc = ctc
|
|
|
|
self.criterion_att = LabelSmoothingLoss(
|
|
|
|
size=vocab_size,
|
|
|
|
padding_idx=ignore_id,
|
|
|
|
smoothing=lsm_weight,
|
|
|
|
normalize_length=length_normalized_loss, )
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
speech: paddle.Tensor,
|
|
|
|
speech_lengths: paddle.Tensor,
|
|
|
|
text: paddle.Tensor,
|
|
|
|
text_lengths: paddle.Tensor,
|
|
|
|
asr_text: paddle.Tensor=None,
|
|
|
|
asr_text_lengths: paddle.Tensor=None,
|
|
|
|
) -> Tuple[Optional[paddle.Tensor], Optional[paddle.Tensor], Optional[
|
|
|
|
paddle.Tensor]]:
|
|
|
|
"""Frontend + Encoder + Decoder + Calc loss
|
|
|
|
Args:
|
|
|
|
speech: (Batch, Length, ...)
|
|
|
|
speech_lengths: (Batch, )
|
|
|
|
text: (Batch, Length)
|
|
|
|
text_lengths: (Batch,)
|
|
|
|
Returns:
|
|
|
|
total_loss, attention_loss, ctc_loss
|
|
|
|
"""
|
|
|
|
assert text_lengths.dim() == 1, text_lengths.shape
|
|
|
|
# Check that batch_size is unified
|
|
|
|
assert (speech.shape[0] == speech_lengths.shape[0] == text.shape[0] ==
|
|
|
|
text_lengths.shape[0]), (speech.shape, speech_lengths.shape,
|
|
|
|
text.shape, text_lengths.shape)
|
|
|
|
# 1. Encoder
|
|
|
|
start = time.time()
|
|
|
|
encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
|
|
|
|
encoder_time = time.time() - start
|
|
|
|
#logger.debug(f"encoder time: {encoder_time}")
|
|
|
|
encoder_out_lens = encoder_mask.squeeze(1).sum(1) #[B, 1, T] -> [B]
|
|
|
|
|
|
|
|
# 2a. ST-decoder branch
|
|
|
|
start = time.time()
|
|
|
|
loss_st, acc_st = self._calc_st_loss(encoder_out, encoder_mask, text,
|
|
|
|
text_lengths)
|
|
|
|
decoder_time = time.time() - start
|
|
|
|
|
|
|
|
loss_asr_att = None
|
|
|
|
loss_asr_ctc = None
|
|
|
|
# 2b. ASR Attention-decoder branch
|
|
|
|
if self.asr_weight > 0.:
|
|
|
|
if self.ctc_weight != 1.0:
|
|
|
|
start = time.time()
|
|
|
|
loss_asr_att, acc_att = self._calc_att_loss(
|
|
|
|
encoder_out, encoder_mask, asr_text, asr_text_lengths)
|
|
|
|
decoder_time = time.time() - start
|
|
|
|
|
|
|
|
# 2c. CTC branch
|
|
|
|
if self.ctc_weight != 0.0:
|
|
|
|
start = time.time()
|
|
|
|
loss_asr_ctc = self.ctc(encoder_out, encoder_out_lens, asr_text,
|
|
|
|
asr_text_lengths)
|
|
|
|
ctc_time = time.time() - start
|
|
|
|
|
|
|
|
if loss_asr_ctc is None:
|
|
|
|
loss_asr = loss_asr_att
|
|
|
|
elif loss_asr_att is None:
|
|
|
|
loss_asr = loss_asr_ctc
|
|
|
|
else:
|
|
|
|
loss_asr = self.ctc_weight * loss_asr_ctc + (1 - self.ctc_weight
|
|
|
|
) * loss_asr_att
|
|
|
|
loss = self.asr_weight * loss_asr + (1 - self.asr_weight) * loss_st
|
|
|
|
else:
|
|
|
|
loss = loss_st
|
|
|
|
return loss, loss_st, loss_asr_att, loss_asr_ctc
|
|
|
|
|
|
|
|
def _calc_st_loss(
|
|
|
|
self,
|
|
|
|
encoder_out: paddle.Tensor,
|
|
|
|
encoder_mask: paddle.Tensor,
|
|
|
|
ys_pad: paddle.Tensor,
|
|
|
|
ys_pad_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, float]:
|
|
|
|
"""Calc attention loss.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
encoder_out (paddle.Tensor): [B, Tmax, D]
|
|
|
|
encoder_mask (paddle.Tensor): [B, 1, Tmax]
|
|
|
|
ys_pad (paddle.Tensor): [B, Umax]
|
|
|
|
ys_pad_lens (paddle.Tensor): [B]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple[paddle.Tensor, float]: attention_loss, accuracy rate
|
|
|
|
"""
|
|
|
|
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos,
|
|
|
|
self.ignore_id)
|
|
|
|
ys_in_lens = ys_pad_lens + 1
|
|
|
|
|
|
|
|
# 1. Forward decoder
|
|
|
|
decoder_out, _ = self.st_decoder(encoder_out, encoder_mask, ys_in_pad,
|
|
|
|
ys_in_lens)
|
|
|
|
|
|
|
|
# 2. Compute attention loss
|
|
|
|
loss_att = self.criterion_att(decoder_out, ys_out_pad)
|
|
|
|
acc_att = th_accuracy(
|
|
|
|
decoder_out.view(-1, self.vocab_size),
|
|
|
|
ys_out_pad,
|
|
|
|
ignore_label=self.ignore_id, )
|
|
|
|
return loss_att, acc_att
|
|
|
|
|
|
|
|
def _calc_att_loss(
|
|
|
|
self,
|
|
|
|
encoder_out: paddle.Tensor,
|
|
|
|
encoder_mask: paddle.Tensor,
|
|
|
|
ys_pad: paddle.Tensor,
|
|
|
|
ys_pad_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, float]:
|
|
|
|
"""Calc attention loss.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
encoder_out (paddle.Tensor): [B, Tmax, D]
|
|
|
|
encoder_mask (paddle.Tensor): [B, 1, Tmax]
|
|
|
|
ys_pad (paddle.Tensor): [B, Umax]
|
|
|
|
ys_pad_lens (paddle.Tensor): [B]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple[paddle.Tensor, float]: attention_loss, accuracy rate
|
|
|
|
"""
|
|
|
|
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos,
|
|
|
|
self.ignore_id)
|
|
|
|
ys_in_lens = ys_pad_lens + 1
|
|
|
|
|
|
|
|
# 1. Forward decoder
|
|
|
|
decoder_out, _ = self.decoder(encoder_out, encoder_mask, ys_in_pad,
|
|
|
|
ys_in_lens)
|
|
|
|
|
|
|
|
# 2. Compute attention loss
|
|
|
|
loss_att = self.criterion_att(decoder_out, ys_out_pad)
|
|
|
|
acc_att = th_accuracy(
|
|
|
|
decoder_out.view(-1, self.vocab_size),
|
|
|
|
ys_out_pad,
|
|
|
|
ignore_label=self.ignore_id, )
|
|
|
|
return loss_att, acc_att
|
|
|
|
|
|
|
|
def _forward_encoder(
|
|
|
|
self,
|
|
|
|
speech: paddle.Tensor,
|
|
|
|
speech_lengths: paddle.Tensor,
|
|
|
|
decoding_chunk_size: int=-1,
|
|
|
|
num_decoding_left_chunks: int=-1,
|
|
|
|
simulate_streaming: bool=False,
|
|
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
|
|
"""Encoder pass.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
speech (paddle.Tensor): [B, Tmax, D]
|
|
|
|
speech_lengths (paddle.Tensor): [B]
|
|
|
|
decoding_chunk_size (int, optional): chuck size. Defaults to -1.
|
|
|
|
num_decoding_left_chunks (int, optional): nums chunks. Defaults to -1.
|
|
|
|
simulate_streaming (bool, optional): streaming or not. Defaults to False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple[paddle.Tensor, paddle.Tensor]:
|
|
|
|
encoder hiddens (B, Tmax, D),
|
|
|
|
encoder hiddens mask (B, 1, Tmax).
|
|
|
|
"""
|
|
|
|
# Let's assume B = batch_size
|
|
|
|
# 1. Encoder
|
|
|
|
if simulate_streaming and decoding_chunk_size > 0:
|
|
|
|
encoder_out, encoder_mask = self.encoder.forward_chunk_by_chunk(
|
|
|
|
speech,
|
|
|
|
decoding_chunk_size=decoding_chunk_size,
|
|
|
|
num_decoding_left_chunks=num_decoding_left_chunks
|
|
|
|
) # (B, maxlen, encoder_dim)
|
|
|
|
else:
|
|
|
|
encoder_out, encoder_mask = self.encoder(
|
|
|
|
speech,
|
|
|
|
speech_lengths,
|
|
|
|
decoding_chunk_size=decoding_chunk_size,
|
|
|
|
num_decoding_left_chunks=num_decoding_left_chunks
|
|
|
|
) # (B, maxlen, encoder_dim)
|
|
|
|
return encoder_out, encoder_mask
|
|
|
|
|
|
|
|
def translate(
|
|
|
|
self,
|
|
|
|
speech: paddle.Tensor,
|
|
|
|
speech_lengths: paddle.Tensor,
|
|
|
|
beam_size: int=10,
|
|
|
|
word_reward: float=0.0,
|
|
|
|
maxlenratio: float=0.5,
|
|
|
|
decoding_chunk_size: int=-1,
|
|
|
|
num_decoding_left_chunks: int=-1,
|
|
|
|
simulate_streaming: bool=False, ) -> paddle.Tensor:
|
|
|
|
""" Apply beam search on attention decoder with length penalty
|
|
|
|
Args:
|
|
|
|
speech (paddle.Tensor): (batch, max_len, feat_dim)
|
|
|
|
speech_length (paddle.Tensor): (batch, )
|
|
|
|
beam_size (int): beam size for beam search
|
|
|
|
word_reward (float): word reward used in beam search
|
|
|
|
maxlenratio (float): max length ratio to bound the length of translated text
|
|
|
|
decoding_chunk_size (int): decoding chunk for dynamic chunk
|
|
|
|
trained model.
|
|
|
|
<0: for decoding, use full chunk.
|
|
|
|
>0: for decoding, use fixed chunk size as set.
|
|
|
|
0: used for training, it's prohibited here
|
|
|
|
simulate_streaming (bool): whether do encoder forward in a
|
|
|
|
streaming fashion
|
|
|
|
Returns:
|
|
|
|
paddle.Tensor: decoding result, (batch, max_result_len)
|
|
|
|
"""
|
|
|
|
assert speech.shape[0] == speech_lengths.shape[0]
|
|
|
|
assert decoding_chunk_size != 0
|
|
|
|
assert speech.shape[0] == 1
|
|
|
|
device = speech.place
|
|
|
|
|
|
|
|
# Let's assume B = batch_size and N = beam_size
|
|
|
|
# 1. Encoder and init hypothesis
|
|
|
|
encoder_out, encoder_mask = self._forward_encoder(
|
|
|
|
speech, speech_lengths, decoding_chunk_size,
|
|
|
|
num_decoding_left_chunks,
|
|
|
|
simulate_streaming) # (B, maxlen, encoder_dim)
|
|
|
|
|
|
|
|
maxlen = max(int(encoder_out.shape[1] * maxlenratio), 5)
|
|
|
|
|
|
|
|
hyp = {"score": 0.0, "yseq": [self.sos], "cache": None}
|
|
|
|
hyps = [hyp]
|
|
|
|
ended_hyps = []
|
|
|
|
cur_best_score = -float("inf")
|
|
|
|
cache = None
|
|
|
|
|
|
|
|
# 2. Decoder forward step by step
|
|
|
|
for i in range(1, maxlen + 1):
|
|
|
|
ys = paddle.ones((len(hyps), i), dtype=paddle.long)
|
|
|
|
|
|
|
|
if hyps[0]["cache"] is not None:
|
|
|
|
cache = [
|
|
|
|
paddle.ones(
|
|
|
|
(len(hyps), i - 1, hyp_cache.shape[-1]),
|
|
|
|
dtype=paddle.float32) for hyp_cache in hyps[0]["cache"]
|
|
|
|
]
|
|
|
|
for j, hyp in enumerate(hyps):
|
|
|
|
ys[j, :] = paddle.to_tensor(hyp["yseq"])
|
|
|
|
if hyps[0]["cache"] is not None:
|
|
|
|
for k in range(len(cache)):
|
|
|
|
cache[k][j] = hyps[j]["cache"][k]
|
|
|
|
ys_mask = subsequent_mask(i).unsqueeze(0).to(device)
|
|
|
|
|
|
|
|
logp, cache = self.st_decoder.forward_one_step(
|
|
|
|
encoder_out.repeat(len(hyps), 1, 1),
|
|
|
|
encoder_mask.repeat(len(hyps), 1, 1), ys, ys_mask, cache)
|
|
|
|
|
|
|
|
hyps_best_kept = []
|
|
|
|
for j, hyp in enumerate(hyps):
|
|
|
|
top_k_logp, top_k_index = logp[j:j + 1].topk(beam_size)
|
|
|
|
|
|
|
|
for b in range(beam_size):
|
|
|
|
new_hyp = {}
|
|
|
|
new_hyp["score"] = hyp["score"] + float(top_k_logp[0, b])
|
|
|
|
new_hyp["yseq"] = [0] * (1 + len(hyp["yseq"]))
|
|
|
|
new_hyp["yseq"][:len(hyp["yseq"])] = hyp["yseq"]
|
|
|
|
new_hyp["yseq"][len(hyp["yseq"])] = int(top_k_index[0, b])
|
|
|
|
new_hyp["cache"] = [cache_[j] for cache_ in cache]
|
|
|
|
# will be (2 x beam) hyps at most
|
|
|
|
hyps_best_kept.append(new_hyp)
|
|
|
|
|
|
|
|
hyps_best_kept = sorted(
|
|
|
|
hyps_best_kept, key=lambda x: -x["score"])[:beam_size]
|
|
|
|
|
|
|
|
# sort and get nbest
|
|
|
|
hyps = hyps_best_kept
|
|
|
|
if i == maxlen:
|
|
|
|
for hyp in hyps:
|
|
|
|
hyp["yseq"].append(self.eos)
|
|
|
|
|
|
|
|
# finalize the ended hypotheses with word reward (by length)
|
|
|
|
remained_hyps = []
|
|
|
|
for hyp in hyps:
|
|
|
|
if hyp["yseq"][-1] == self.eos:
|
|
|
|
hyp["score"] += (i - 1) * word_reward
|
|
|
|
cur_best_score = max(cur_best_score, hyp["score"])
|
|
|
|
ended_hyps.append(hyp)
|
|
|
|
else:
|
|
|
|
# stop while guarantee the optimality
|
|
|
|
if hyp["score"] + maxlen * word_reward > cur_best_score:
|
|
|
|
remained_hyps.append(hyp)
|
|
|
|
|
|
|
|
# stop predition when there is no unended hypothesis
|
|
|
|
if not remained_hyps:
|
|
|
|
break
|
|
|
|
hyps = remained_hyps
|
|
|
|
|
|
|
|
# 3. Select best of best
|
|
|
|
best_hyp = max(ended_hyps, key=lambda x: x["score"])
|
|
|
|
|
|
|
|
return paddle.to_tensor([best_hyp["yseq"][1:]])
|
|
|
|
|
|
|
|
# @jit.to_static
|
|
|
|
def subsampling_rate(self) -> int:
|
|
|
|
""" Export interface for c++ call, return subsampling_rate of the
|
|
|
|
model
|
|
|
|
"""
|
|
|
|
return self.encoder.embed.subsampling_rate
|
|
|
|
|
|
|
|
# @jit.to_static
|
|
|
|
def right_context(self) -> int:
|
|
|
|
""" Export interface for c++ call, return right_context of the model
|
|
|
|
"""
|
|
|
|
return self.encoder.embed.right_context
|
|
|
|
|
|
|
|
# @jit.to_static
|
|
|
|
def sos_symbol(self) -> int:
|
|
|
|
""" Export interface for c++ call, return sos symbol id of the model
|
|
|
|
"""
|
|
|
|
return self.sos
|
|
|
|
|
|
|
|
# @jit.to_static
|
|
|
|
def eos_symbol(self) -> int:
|
|
|
|
""" Export interface for c++ call, return eos symbol id of the model
|
|
|
|
"""
|
|
|
|
return self.eos
|
|
|
|
|
|
|
|
@jit.to_static
|
|
|
|
def forward_encoder_chunk(
|
|
|
|
self,
|
|
|
|
xs: paddle.Tensor,
|
|
|
|
offset: int,
|
|
|
|
required_cache_size: int,
|
|
|
|
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
|
|
|
|
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
|
|
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
|
|
""" Export interface for c++ call, give input chunk xs, and return
|
|
|
|
output from time 0 to current chunk.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
xs (paddle.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
|
|
|
where `time == (chunk_size - 1) * subsample_rate + \
|
|
|
|
subsample.right_context + 1`
|
|
|
|
offset (int): current offset in encoder output time stamp
|
|
|
|
required_cache_size (int): cache size required for next chunk
|
|
|
|
compuation
|
|
|
|
>=0: actual cache size
|
|
|
|
<0: means all history cache is required
|
|
|
|
att_cache (paddle.Tensor): cache tensor for KEY & VALUE in
|
|
|
|
transformer/conformer attention, with shape
|
|
|
|
(elayers, head, cache_t1, d_k * 2), where
|
|
|
|
`head * d_k == hidden-dim` and
|
|
|
|
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
|
|
|
`d_k * 2` for att key & value.
|
|
|
|
cnn_cache (paddle.Tensor): cache tensor for cnn_module in conformer,
|
|
|
|
(elayers, b=1, hidden-dim, cache_t2), where
|
|
|
|
`cache_t2 == cnn.lorder - 1`
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
paddle.Tensor: output of current input xs,
|
|
|
|
with shape (b=1, chunk_size, hidden-dim).
|
|
|
|
paddle.Tensor: new attention cache required for next chunk, with
|
|
|
|
dynamic shape (elayers, head, T(?), d_k * 2)
|
|
|
|
depending on required_cache_size.
|
|
|
|
paddle.Tensor: new conformer cnn cache required for next chunk, with
|
|
|
|
same shape as the original cnn_cache.
|
|
|
|
"""
|
|
|
|
return self.encoder.forward_chunk(xs, offset, required_cache_size,
|
|
|
|
att_cache, cnn_cache)
|
|
|
|
|
|
|
|
# @jit.to_static
|
|
|
|
def ctc_activation(self, xs: paddle.Tensor) -> paddle.Tensor:
|
|
|
|
""" Export interface for c++ call, apply linear transform and log
|
|
|
|
softmax before ctc
|
|
|
|
Args:
|
|
|
|
xs (paddle.Tensor): encoder output
|
|
|
|
Returns:
|
|
|
|
paddle.Tensor: activation before ctc
|
|
|
|
"""
|
|
|
|
return self.ctc.log_softmax(xs)
|
|
|
|
|
|
|
|
@jit.to_static
|
|
|
|
def forward_attention_decoder(
|
|
|
|
self,
|
|
|
|
hyps: paddle.Tensor,
|
|
|
|
hyps_lens: paddle.Tensor,
|
|
|
|
encoder_out: paddle.Tensor, ) -> paddle.Tensor:
|
|
|
|
""" Export interface for c++ call, forward decoder with multiple
|
|
|
|
hypothesis from ctc prefix beam search and one encoder output
|
|
|
|
Args:
|
|
|
|
hyps (paddle.Tensor): hyps from ctc prefix beam search, already
|
|
|
|
pad sos at the begining, (B, T)
|
|
|
|
hyps_lens (paddle.Tensor): length of each hyp in hyps, (B)
|
|
|
|
encoder_out (paddle.Tensor): corresponding encoder output, (B=1, T, D)
|
|
|
|
Returns:
|
|
|
|
paddle.Tensor: decoder output, (B, L)
|
|
|
|
"""
|
|
|
|
assert encoder_out.shape[0] == 1
|
|
|
|
num_hyps = hyps.shape[0]
|
|
|
|
assert hyps_lens.shape[0] == num_hyps
|
|
|
|
encoder_out = encoder_out.repeat(num_hyps, 1, 1)
|
|
|
|
# (B, 1, T)
|
|
|
|
encoder_mask = paddle.ones(
|
|
|
|
[num_hyps, 1, encoder_out.shape[1]], dtype=paddle.bool)
|
|
|
|
# (num_hyps, max_hyps_len, vocab_size)
|
|
|
|
decoder_out, _ = self.decoder(encoder_out, encoder_mask, hyps,
|
|
|
|
hyps_lens)
|
|
|
|
decoder_out = paddle.nn.functional.log_softmax(decoder_out, dim=-1)
|
|
|
|
return decoder_out
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
def decode(self,
|
|
|
|
feats: paddle.Tensor,
|
|
|
|
feats_lengths: paddle.Tensor,
|
|
|
|
text_feature: Dict[str, int],
|
|
|
|
decoding_method: str,
|
|
|
|
beam_size: int,
|
|
|
|
word_reward: float=0.0,
|
|
|
|
maxlenratio: float=0.5,
|
|
|
|
decoding_chunk_size: int=-1,
|
|
|
|
num_decoding_left_chunks: int=-1,
|
|
|
|
simulate_streaming: bool=False):
|
|
|
|
"""u2 decoding.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
feats (Tensor): audio features, (B, T, D)
|
|
|
|
feats_lengths (Tensor): (B)
|
|
|
|
text_feature (TextFeaturizer): text feature object.
|
|
|
|
decoding_method (str): decoding mode, e.g.
|
|
|
|
'fullsentence',
|
|
|
|
'simultaneous'
|
|
|
|
beam_size (int): beam size for search
|
|
|
|
decoding_chunk_size (int, optional): decoding chunk size. Defaults to -1.
|
|
|
|
<0: for decoding, use full chunk.
|
|
|
|
>0: for decoding, use fixed chunk size as set.
|
|
|
|
0: used for training, it's prohibited here.
|
|
|
|
num_decoding_left_chunks (int, optional):
|
|
|
|
number of left chunks for decoding. Defaults to -1.
|
|
|
|
simulate_streaming (bool, optional): simulate streaming inference. Defaults to False.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: when not support decoding_method.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[List[int]]: transcripts.
|
|
|
|
"""
|
|
|
|
batch_size = feats.shape[0]
|
|
|
|
|
|
|
|
if decoding_method == 'fullsentence':
|
|
|
|
hyps = self.translate(
|
|
|
|
feats,
|
|
|
|
feats_lengths,
|
|
|
|
beam_size=beam_size,
|
|
|
|
word_reward=word_reward,
|
|
|
|
maxlenratio=maxlenratio,
|
|
|
|
decoding_chunk_size=decoding_chunk_size,
|
|
|
|
num_decoding_left_chunks=num_decoding_left_chunks,
|
|
|
|
simulate_streaming=simulate_streaming)
|
|
|
|
hyps = [hyp.tolist() for hyp in hyps]
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Not support decoding method: {decoding_method}")
|
|
|
|
|
|
|
|
res = [text_feature.defeaturize(hyp) for hyp in hyps]
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
class U2STModel(U2STBaseModel):
|
|
|
|
def __init__(self, configs: dict):
|
|
|
|
vocab_size, encoder, decoder = U2STModel._init_from_config(configs)
|
|
|
|
|
|
|
|
if isinstance(decoder, Tuple):
|
|
|
|
st_decoder, asr_decoder, ctc = decoder
|
|
|
|
super().__init__(
|
|
|
|
vocab_size=vocab_size,
|
|
|
|
encoder=encoder,
|
|
|
|
st_decoder=st_decoder,
|
|
|
|
decoder=asr_decoder,
|
|
|
|
ctc=ctc,
|
|
|
|
**configs['model_conf'])
|
|
|
|
else:
|
|
|
|
super().__init__(
|
|
|
|
vocab_size=vocab_size,
|
|
|
|
encoder=encoder,
|
|
|
|
st_decoder=decoder,
|
|
|
|
**configs['model_conf'])
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _init_from_config(cls, configs: dict):
|
|
|
|
"""init sub module for model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
configs (dict): config dict.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: raise when using not support encoder type.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
int, nn.Layer, nn.Layer, nn.Layer: vocab size, encoder, decoder, ctc
|
|
|
|
"""
|
|
|
|
if configs['cmvn_file'] is not None:
|
|
|
|
mean, istd = load_cmvn(configs['cmvn_file'],
|
|
|
|
configs['cmvn_file_type'])
|
|
|
|
global_cmvn = GlobalCMVN(
|
|
|
|
paddle.to_tensor(mean, dtype=paddle.float),
|
|
|
|
paddle.to_tensor(istd, dtype=paddle.float))
|
|
|
|
else:
|
|
|
|
global_cmvn = None
|
|
|
|
|
|
|
|
input_dim = configs['input_dim']
|
|
|
|
vocab_size = configs['output_dim']
|
|
|
|
assert input_dim != 0, input_dim
|
|
|
|
assert vocab_size != 0, vocab_size
|
|
|
|
|
|
|
|
encoder_type = configs.get('encoder', 'transformer')
|
|
|
|
logger.info(f"U2 Encoder type: {encoder_type}")
|
|
|
|
if encoder_type == 'transformer':
|
|
|
|
encoder = TransformerEncoder(
|
|
|
|
input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
|
|
|
|
elif encoder_type == 'conformer':
|
|
|
|
encoder = ConformerEncoder(
|
|
|
|
input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
|
|
|
|
else:
|
|
|
|
raise ValueError(f"not support encoder type:{encoder_type}")
|
|
|
|
|
|
|
|
st_decoder = TransformerDecoder(vocab_size,
|
|
|
|
encoder.output_size(),
|
|
|
|
**configs['decoder_conf'])
|
|
|
|
|
|
|
|
asr_weight = configs['model_conf']['asr_weight']
|
|
|
|
logger.info(f"ASR Joint Training Weight: {asr_weight}")
|
|
|
|
|
|
|
|
if asr_weight > 0.:
|
|
|
|
decoder = TransformerDecoder(vocab_size,
|
|
|
|
encoder.output_size(),
|
|
|
|
**configs['decoder_conf'])
|
|
|
|
# ctc decoder and ctc loss
|
|
|
|
model_conf = configs['model_conf']
|
|
|
|
dropout_rate = model_conf.get('ctc_dropout_rate', 0.0)
|
|
|
|
grad_norm_type = model_conf.get('ctc_grad_norm_type', None)
|
|
|
|
ctc = CTCDecoderBase(
|
|
|
|
odim=vocab_size,
|
|
|
|
enc_n_units=encoder.output_size(),
|
|
|
|
blank_id=0,
|
|
|
|
dropout_rate=dropout_rate,
|
|
|
|
reduction=True, # sum
|
|
|
|
batch_average=True, # sum / batch_size
|
|
|
|
grad_norm_type=grad_norm_type)
|
|
|
|
|
|
|
|
return vocab_size, encoder, (st_decoder, decoder, ctc)
|
|
|
|
else:
|
|
|
|
return vocab_size, encoder, st_decoder
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_config(cls, configs: dict):
|
|
|
|
"""init model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
configs (dict): config dict.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: raise when using not support encoder type.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
nn.Layer: U2STModel
|
|
|
|
"""
|
|
|
|
model = cls(configs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_pretrained(cls, dataloader, config, checkpoint_path):
|
|
|
|
"""Build a DeepSpeech2Model model from a pretrained model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataloader (paddle.io.DataLoader): not used.
|
|
|
|
config (yacs.config.CfgNode): model configs
|
|
|
|
checkpoint_path (Path or str): the path of pretrained model checkpoint, without extension name
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
DeepSpeech2Model: The model built from pretrained result.
|
|
|
|
"""
|
|
|
|
with UpdateConfig(config):
|
|
|
|
config.input_dim = dataloader.collate_fn.feature_size
|
|
|
|
config.output_dim = dataloader.collate_fn.vocab_size
|
|
|
|
|
|
|
|
model = cls.from_config(config)
|
|
|
|
|
|
|
|
if checkpoint_path:
|
|
|
|
infos = checkpoint.load_parameters(
|
|
|
|
model, checkpoint_path=checkpoint_path)
|
|
|
|
logger.info(f"checkpoint info: {infos}")
|
|
|
|
layer_tools.summary(model)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
class U2STInferModel(U2STModel):
|
|
|
|
def __init__(self, configs: dict):
|
|
|
|
super().__init__(configs)
|
|
|
|
|
|
|
|
def forward(self,
|
|
|
|
feats,
|
|
|
|
feats_lengths,
|
|
|
|
decoding_chunk_size=-1,
|
|
|
|
num_decoding_left_chunks=-1,
|
|
|
|
simulate_streaming=False):
|
|
|
|
"""export model function
|
|
|
|
|
|
|
|
Args:
|
|
|
|
feats (Tensor): [B, T, D]
|
|
|
|
feats_lengths (Tensor): [B]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[List[int]]: best path result
|
|
|
|
"""
|
|
|
|
return self.translate(
|
|
|
|
feats,
|
|
|
|
feats_lengths,
|
|
|
|
decoding_chunk_size=decoding_chunk_size,
|
|
|
|
num_decoding_left_chunks=num_decoding_left_chunks,
|
|
|
|
simulate_streaming=simulate_streaming)
|