You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/models/u2_st/u2_st.py

678 lines
26 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""U2 ASR Model
Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition
(https://arxiv.org/pdf/2012.05481.pdf)
"""
import time
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
import paddle
from paddle import jit
from paddle import nn
from paddlespeech.s2t.frontend.utility import IGNORE_ID
from paddlespeech.s2t.frontend.utility import load_cmvn
from paddlespeech.s2t.modules.cmvn import GlobalCMVN
from paddlespeech.s2t.modules.ctc import CTCDecoderBase
from paddlespeech.s2t.modules.decoder import TransformerDecoder
from paddlespeech.s2t.modules.encoder import ConformerEncoder
from paddlespeech.s2t.modules.encoder import TransformerEncoder
from paddlespeech.s2t.modules.loss import LabelSmoothingLoss
from paddlespeech.s2t.modules.mask import mask_finished_preds
from paddlespeech.s2t.modules.mask import mask_finished_scores
from paddlespeech.s2t.modules.mask import subsequent_mask
from paddlespeech.s2t.utils import checkpoint
from paddlespeech.s2t.utils import layer_tools
from paddlespeech.s2t.utils.log import Log
from paddlespeech.s2t.utils.tensor_utils import add_sos_eos
from paddlespeech.s2t.utils.tensor_utils import th_accuracy
from paddlespeech.s2t.utils.utility import UpdateConfig
__all__ = ["U2STModel", "U2STInferModel"]
logger = Log(__name__).getlog()
3 years ago
class U2STBaseModel(nn.Layer):
"""CTC-Attention hybrid Encoder-Decoder model"""
def __init__(self,
vocab_size: int,
encoder: TransformerEncoder,
st_decoder: TransformerDecoder,
decoder: TransformerDecoder=None,
ctc: CTCDecoderBase=None,
ctc_weight: float=0.0,
asr_weight: float=0.0,
ignore_id: int=IGNORE_ID,
lsm_weight: float=0.0,
length_normalized_loss: bool=False,
**kwargs):
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
super().__init__()
# note that eos is the same as sos (equivalent ID)
self.sos = vocab_size - 1
self.eos = vocab_size - 1
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.ctc_weight = ctc_weight
self.asr_weight = asr_weight
self.encoder = encoder
self.st_decoder = st_decoder
self.decoder = decoder
self.ctc = ctc
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss, )
def forward(
self,
speech: paddle.Tensor,
speech_lengths: paddle.Tensor,
text: paddle.Tensor,
text_lengths: paddle.Tensor,
asr_text: paddle.Tensor=None,
asr_text_lengths: paddle.Tensor=None,
) -> Tuple[Optional[paddle.Tensor], Optional[paddle.Tensor], Optional[
paddle.Tensor]]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
Returns:
total_loss, attention_loss, ctc_loss
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (speech.shape[0] == speech_lengths.shape[0] == text.shape[0] ==
text_lengths.shape[0]), (speech.shape, speech_lengths.shape,
text.shape, text_lengths.shape)
# 1. Encoder
start = time.time()
encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
encoder_time = time.time() - start
#logger.debug(f"encoder time: {encoder_time}")
#TODO(Hui Zhang): sum not support bool type
#encoder_out_lens = encoder_mask.squeeze(1).sum(1) #[B, 1, T] -> [B]
encoder_out_lens = encoder_mask.squeeze(1).cast(paddle.int64).sum(
1) #[B, 1, T] -> [B]
# 2a. ST-decoder branch
start = time.time()
loss_st, acc_st = self._calc_st_loss(encoder_out, encoder_mask, text,
text_lengths)
decoder_time = time.time() - start
loss_asr_att = None
loss_asr_ctc = None
# 2b. ASR Attention-decoder branch
if self.asr_weight > 0.:
if self.ctc_weight != 1.0:
start = time.time()
loss_asr_att, acc_att = self._calc_att_loss(
encoder_out, encoder_mask, asr_text, asr_text_lengths)
decoder_time = time.time() - start
# 2c. CTC branch
if self.ctc_weight != 0.0:
start = time.time()
loss_asr_ctc = self.ctc(encoder_out, encoder_out_lens, asr_text,
asr_text_lengths)
ctc_time = time.time() - start
if loss_asr_ctc is None:
loss_asr = loss_asr_att
elif loss_asr_att is None:
loss_asr = loss_asr_ctc
else:
loss_asr = self.ctc_weight * loss_asr_ctc + (1 - self.ctc_weight
) * loss_asr_att
loss = self.asr_weight * loss_asr + (1 - self.asr_weight) * loss_st
else:
loss = loss_st
return loss, loss_st, loss_asr_att, loss_asr_ctc
def _calc_st_loss(
self,
encoder_out: paddle.Tensor,
encoder_mask: paddle.Tensor,
ys_pad: paddle.Tensor,
ys_pad_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, float]:
"""Calc attention loss.
Args:
encoder_out (paddle.Tensor): [B, Tmax, D]
encoder_mask (paddle.Tensor): [B, 1, Tmax]
ys_pad (paddle.Tensor): [B, Umax]
ys_pad_lens (paddle.Tensor): [B]
Returns:
Tuple[paddle.Tensor, float]: attention_loss, accuracy rate
"""
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos,
self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.st_decoder(encoder_out, encoder_mask, ys_in_pad,
ys_in_lens)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id, )
return loss_att, acc_att
def _calc_att_loss(
self,
encoder_out: paddle.Tensor,
encoder_mask: paddle.Tensor,
ys_pad: paddle.Tensor,
ys_pad_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, float]:
"""Calc attention loss.
Args:
encoder_out (paddle.Tensor): [B, Tmax, D]
encoder_mask (paddle.Tensor): [B, 1, Tmax]
ys_pad (paddle.Tensor): [B, Umax]
ys_pad_lens (paddle.Tensor): [B]
Returns:
Tuple[paddle.Tensor, float]: attention_loss, accuracy rate
"""
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos,
self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.decoder(encoder_out, encoder_mask, ys_in_pad,
ys_in_lens)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id, )
return loss_att, acc_att
def _forward_encoder(
self,
speech: paddle.Tensor,
speech_lengths: paddle.Tensor,
decoding_chunk_size: int=-1,
num_decoding_left_chunks: int=-1,
simulate_streaming: bool=False,
) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Encoder pass.
Args:
speech (paddle.Tensor): [B, Tmax, D]
speech_lengths (paddle.Tensor): [B]
decoding_chunk_size (int, optional): chuck size. Defaults to -1.
num_decoding_left_chunks (int, optional): nums chunks. Defaults to -1.
simulate_streaming (bool, optional): streaming or not. Defaults to False.
Returns:
Tuple[paddle.Tensor, paddle.Tensor]:
encoder hiddens (B, Tmax, D),
encoder hiddens mask (B, 1, Tmax).
"""
# Let's assume B = batch_size
# 1. Encoder
if simulate_streaming and decoding_chunk_size > 0:
encoder_out, encoder_mask = self.encoder.forward_chunk_by_chunk(
speech,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks
) # (B, maxlen, encoder_dim)
else:
encoder_out, encoder_mask = self.encoder(
speech,
speech_lengths,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks
) # (B, maxlen, encoder_dim)
return encoder_out, encoder_mask
def translate(
self,
speech: paddle.Tensor,
speech_lengths: paddle.Tensor,
beam_size: int=10,
word_reward: float=0.0,
maxlenratio: float=0.5,
decoding_chunk_size: int=-1,
num_decoding_left_chunks: int=-1,
simulate_streaming: bool=False, ) -> paddle.Tensor:
""" Apply beam search on attention decoder with length penalty
Args:
speech (paddle.Tensor): (batch, max_len, feat_dim)
speech_length (paddle.Tensor): (batch, )
beam_size (int): beam size for beam search
word_reward (float): word reward used in beam search
maxlenratio (float): max length ratio to bound the length of translated text
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
paddle.Tensor: decoding result, (batch, max_result_len)
"""
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
assert speech.shape[0] == 1
device = speech.place
# Let's assume B = batch_size and N = beam_size
# 1. Encoder and init hypothesis
encoder_out, encoder_mask = self._forward_encoder(
speech, speech_lengths, decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming) # (B, maxlen, encoder_dim)
maxlen = max(int(encoder_out.shape[1] * maxlenratio), 5)
hyp = {"score": 0.0, "yseq": [self.sos], "cache": None}
hyps = [hyp]
ended_hyps = []
cur_best_score = -float("inf")
cache = None
# 2. Decoder forward step by step
for i in range(1, maxlen + 1):
ys = paddle.ones((len(hyps), i), dtype=paddle.long)
if hyps[0]["cache"] is not None:
cache = [
paddle.ones(
(len(hyps), i - 1, hyp_cache.shape[-1]),
dtype=paddle.float32) for hyp_cache in hyps[0]["cache"]
]
for j, hyp in enumerate(hyps):
ys[j, :] = paddle.to_tensor(hyp["yseq"])
if hyps[0]["cache"] is not None:
for k in range(len(cache)):
cache[k][j] = hyps[j]["cache"][k]
ys_mask = subsequent_mask(i).unsqueeze(0).to(device)
logp, cache = self.st_decoder.forward_one_step(
encoder_out.repeat(len(hyps), 1, 1),
encoder_mask.repeat(len(hyps), 1, 1), ys, ys_mask, cache)
hyps_best_kept = []
for j, hyp in enumerate(hyps):
top_k_logp, top_k_index = logp[j:j + 1].topk(beam_size)
for b in range(beam_size):
new_hyp = {}
new_hyp["score"] = hyp["score"] + float(top_k_logp[0, b])
new_hyp["yseq"] = [0] * (1 + len(hyp["yseq"]))
new_hyp["yseq"][:len(hyp["yseq"])] = hyp["yseq"]
new_hyp["yseq"][len(hyp["yseq"])] = int(top_k_index[0, b])
new_hyp["cache"] = [cache_[j] for cache_ in cache]
# will be (2 x beam) hyps at most
hyps_best_kept.append(new_hyp)
hyps_best_kept = sorted(
hyps_best_kept, key=lambda x: -x["score"])[:beam_size]
# sort and get nbest
hyps = hyps_best_kept
if i == maxlen:
for hyp in hyps:
hyp["yseq"].append(self.eos)
# finalize the ended hypotheses with word reward (by length)
remained_hyps = []
for hyp in hyps:
if hyp["yseq"][-1] == self.eos:
hyp["score"] += (i - 1) * word_reward
cur_best_score = max(cur_best_score, hyp["score"])
ended_hyps.append(hyp)
else:
# stop while guarantee the optimality
if hyp["score"] + maxlen * word_reward > cur_best_score:
remained_hyps.append(hyp)
# stop predition when there is no unended hypothesis
if not remained_hyps:
break
hyps = remained_hyps
# 3. Select best of best
best_hyp = max(ended_hyps, key=lambda x: x["score"])
return paddle.to_tensor([best_hyp["yseq"][1:]])
# @jit.to_static
def subsampling_rate(self) -> int:
""" Export interface for c++ call, return subsampling_rate of the
model
"""
return self.encoder.embed.subsampling_rate
# @jit.to_static
def right_context(self) -> int:
""" Export interface for c++ call, return right_context of the model
"""
return self.encoder.embed.right_context
# @jit.to_static
def sos_symbol(self) -> int:
""" Export interface for c++ call, return sos symbol id of the model
"""
return self.sos
# @jit.to_static
def eos_symbol(self) -> int:
""" Export interface for c++ call, return eos symbol id of the model
"""
return self.eos
3 years ago
@jit.to_static
def forward_encoder_chunk(
self,
xs: paddle.Tensor,
offset: int,
required_cache_size: int,
subsampling_cache: Optional[paddle.Tensor]=None,
elayers_output_cache: Optional[List[paddle.Tensor]]=None,
conformer_cnn_cache: Optional[List[paddle.Tensor]]=None,
) -> Tuple[paddle.Tensor, paddle.Tensor, List[paddle.Tensor], List[
paddle.Tensor]]:
""" Export interface for c++ call, give input chunk xs, and return
output from time 0 to current chunk.
Args:
xs (paddle.Tensor): chunk input
subsampling_cache (Optional[paddle.Tensor]): subsampling cache
elayers_output_cache (Optional[List[paddle.Tensor]]):
transformer/conformer encoder layers output cache
conformer_cnn_cache (Optional[List[paddle.Tensor]]): conformer
cnn cache
Returns:
paddle.Tensor: output, it ranges from time 0 to current chunk.
paddle.Tensor: subsampling cache
List[paddle.Tensor]: attention cache
List[paddle.Tensor]: conformer cnn cache
"""
return self.encoder.forward_chunk(
xs, offset, required_cache_size, subsampling_cache,
elayers_output_cache, conformer_cnn_cache)
# @jit.to_static
def ctc_activation(self, xs: paddle.Tensor) -> paddle.Tensor:
""" Export interface for c++ call, apply linear transform and log
softmax before ctc
Args:
xs (paddle.Tensor): encoder output
Returns:
paddle.Tensor: activation before ctc
"""
return self.ctc.log_softmax(xs)
3 years ago
@jit.to_static
def forward_attention_decoder(
self,
hyps: paddle.Tensor,
hyps_lens: paddle.Tensor,
encoder_out: paddle.Tensor, ) -> paddle.Tensor:
""" Export interface for c++ call, forward decoder with multiple
hypothesis from ctc prefix beam search and one encoder output
Args:
hyps (paddle.Tensor): hyps from ctc prefix beam search, already
pad sos at the begining, (B, T)
hyps_lens (paddle.Tensor): length of each hyp in hyps, (B)
encoder_out (paddle.Tensor): corresponding encoder output, (B=1, T, D)
Returns:
paddle.Tensor: decoder output, (B, L)
"""
assert encoder_out.shape[0] == 1
num_hyps = hyps.shape[0]
assert hyps_lens.shape[0] == num_hyps
encoder_out = encoder_out.repeat(num_hyps, 1, 1)
# (B, 1, T)
encoder_mask = paddle.ones(
[num_hyps, 1, encoder_out.shape[1]], dtype=paddle.bool)
# (num_hyps, max_hyps_len, vocab_size)
decoder_out, _ = self.decoder(encoder_out, encoder_mask, hyps,
hyps_lens)
decoder_out = paddle.nn.functional.log_softmax(decoder_out, dim=-1)
return decoder_out
@paddle.no_grad()
def decode(self,
feats: paddle.Tensor,
feats_lengths: paddle.Tensor,
text_feature: Dict[str, int],
decoding_method: str,
beam_size: int,
word_reward: float=0.0,
maxlenratio: float=0.5,
decoding_chunk_size: int=-1,
num_decoding_left_chunks: int=-1,
simulate_streaming: bool=False):
"""u2 decoding.
Args:
3 years ago
feats (Tensor): audio features, (B, T, D)
feats_lengths (Tensor): (B)
text_feature (TextFeaturizer): text feature object.
decoding_method (str): decoding mode, e.g.
'fullsentence',
'simultaneous'
beam_size (int): beam size for search
decoding_chunk_size (int, optional): decoding chunk size. Defaults to -1.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here.
num_decoding_left_chunks (int, optional):
number of left chunks for decoding. Defaults to -1.
simulate_streaming (bool, optional): simulate streaming inference. Defaults to False.
Raises:
ValueError: when not support decoding_method.
Returns:
List[List[int]]: transcripts.
"""
batch_size = feats.shape[0]
if decoding_method == 'fullsentence':
hyps = self.translate(
feats,
feats_lengths,
beam_size=beam_size,
word_reward=word_reward,
maxlenratio=maxlenratio,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks,
simulate_streaming=simulate_streaming)
hyps = [hyp.tolist() for hyp in hyps]
else:
raise ValueError(f"Not support decoding method: {decoding_method}")
res = [text_feature.defeaturize(hyp) for hyp in hyps]
return res
class U2STModel(U2STBaseModel):
def __init__(self, configs: dict):
vocab_size, encoder, decoder = U2STModel._init_from_config(configs)
if isinstance(decoder, Tuple):
st_decoder, asr_decoder, ctc = decoder
super().__init__(
vocab_size=vocab_size,
encoder=encoder,
st_decoder=st_decoder,
decoder=asr_decoder,
ctc=ctc,
**configs['model_conf'])
else:
super().__init__(
vocab_size=vocab_size,
encoder=encoder,
st_decoder=decoder,
**configs['model_conf'])
@classmethod
def _init_from_config(cls, configs: dict):
"""init sub module for model.
Args:
configs (dict): config dict.
Raises:
ValueError: raise when using not support encoder type.
Returns:
int, nn.Layer, nn.Layer, nn.Layer: vocab size, encoder, decoder, ctc
"""
if configs['cmvn_file'] is not None:
mean, istd = load_cmvn(configs['cmvn_file'],
configs['cmvn_file_type'])
global_cmvn = GlobalCMVN(
paddle.to_tensor(mean, dtype=paddle.float),
paddle.to_tensor(istd, dtype=paddle.float))
else:
global_cmvn = None
input_dim = configs['input_dim']
vocab_size = configs['output_dim']
assert input_dim != 0, input_dim
assert vocab_size != 0, vocab_size
encoder_type = configs.get('encoder', 'transformer')
logger.info(f"U2 Encoder type: {encoder_type}")
if encoder_type == 'transformer':
encoder = TransformerEncoder(
input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
elif encoder_type == 'conformer':
encoder = ConformerEncoder(
input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
else:
raise ValueError(f"not support encoder type:{encoder_type}")
st_decoder = TransformerDecoder(vocab_size,
encoder.output_size(),
**configs['decoder_conf'])
asr_weight = configs['model_conf']['asr_weight']
logger.info(f"ASR Joint Training Weight: {asr_weight}")
if asr_weight > 0.:
decoder = TransformerDecoder(vocab_size,
encoder.output_size(),
**configs['decoder_conf'])
# ctc decoder and ctc loss
model_conf = configs['model_conf']
dropout_rate = model_conf.get('ctc_dropout_rate', 0.0)
grad_norm_type = model_conf.get('ctc_grad_norm_type', None)
ctc = CTCDecoderBase(
odim=vocab_size,
enc_n_units=encoder.output_size(),
blank_id=0,
dropout_rate=dropout_rate,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=grad_norm_type)
return vocab_size, encoder, (st_decoder, decoder, ctc)
else:
return vocab_size, encoder, st_decoder
@classmethod
def from_config(cls, configs: dict):
"""init model.
Args:
configs (dict): config dict.
Raises:
ValueError: raise when using not support encoder type.
Returns:
nn.Layer: U2STModel
"""
model = cls(configs)
return model
@classmethod
def from_pretrained(cls, dataloader, config, checkpoint_path):
"""Build a DeepSpeech2Model model from a pretrained model.
Args:
dataloader (paddle.io.DataLoader): not used.
config (yacs.config.CfgNode): model configs
checkpoint_path (Path or str): the path of pretrained model checkpoint, without extension name
Returns:
DeepSpeech2Model: The model built from pretrained result.
"""
with UpdateConfig(config):
config.input_dim = dataloader.collate_fn.feature_size
config.output_dim = dataloader.collate_fn.vocab_size
model = cls.from_config(config)
if checkpoint_path:
infos = checkpoint.load_parameters(
model, checkpoint_path=checkpoint_path)
logger.info(f"checkpoint info: {infos}")
layer_tools.summary(model)
return model
class U2STInferModel(U2STModel):
def __init__(self, configs: dict):
super().__init__(configs)
def forward(self,
feats,
feats_lengths,
decoding_chunk_size=-1,
num_decoding_left_chunks=-1,
simulate_streaming=False):
"""export model function
Args:
feats (Tensor): [B, T, D]
feats_lengths (Tensor): [B]
Returns:
List[List[int]]: best path result
"""
return self.translate(
feats,
feats_lengths,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks,
simulate_streaming=simulate_streaming)