You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/cli/asr/infer.py

492 lines
19 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
3 years ago
import sys
import time
from collections import OrderedDict
from typing import List
from typing import Optional
from typing import Union
import librosa
import numpy as np
import paddle
import soundfile
from yacs.config import CfgNode
from ...utils.env import MODEL_HOME
from ..download import get_path_from_url
from ..executor import BaseExecutor
from ..log import logger
from ..utils import CLI_TIMER
from ..utils import stats_wrapper
from ..utils import timer_register
from paddlespeech.s2t.audio.transformation import Transformation
3 years ago
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.utils.utility import UpdateConfig
__all__ = ['ASRExecutor']
3 years ago
@timer_register
class ASRExecutor(BaseExecutor):
def __init__(self):
super().__init__(task='asr', inference_type='offline')
self.parser = argparse.ArgumentParser(
prog='paddlespeech.asr', add_help=True)
self.parser.add_argument(
'--input', type=str, default=None, help='Audio file to recognize.')
self.parser.add_argument(
'--model',
type=str,
default='conformer_wenetspeech',
choices=[
tag[:tag.index('-')]
for tag in self.task_resource.pretrained_models.keys()
],
help='Choose model type of asr task.')
self.parser.add_argument(
'--lang',
type=str,
default='zh',
help='Choose model language. zh or en, zh:[conformer_wenetspeech-zh-16k], en:[transformer_librispeech-en-16k]'
)
self.parser.add_argument(
3 years ago
"--sample_rate",
type=int,
default=16000,
3 years ago
choices=[8000, 16000],
help='Choose the audio sample rate of the model. 8000 or 16000')
self.parser.add_argument(
'--config',
type=str,
default=None,
help='Config of asr task. Use deault config when it is None.')
self.parser.add_argument(
'--decode_method',
type=str,
default='attention_rescoring',
choices=[
'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention',
'attention_rescoring'
],
help='only support transformer and conformer model')
self.parser.add_argument(
'--num_decoding_left_chunks',
'-num_left',
type=str,
default=-1,
help='only support transformer and conformer online model')
self.parser.add_argument(
'--ckpt_path',
type=str,
default=None,
help='Checkpoint file of model.')
self.parser.add_argument(
'--yes',
'-y',
action="store_true",
default=False,
help='No additional parameters required. Once set this parameter, it means accepting the request of the program by default, which includes transforming the audio sample rate'
)
self.parser.add_argument(
'--rtf',
action="store_true",
default=False,
help='Show Real-time Factor(RTF).')
self.parser.add_argument(
'--device',
type=str,
default=paddle.get_device(),
help='Choose device to execute model inference.')
self.parser.add_argument(
'-d',
'--job_dump_result',
action='store_true',
help='Save job result into file.')
self.parser.add_argument(
'-v',
'--verbose',
action='store_true',
help='Increase logger verbosity of current task.')
def _init_from_path(self,
model_type: str='wenetspeech',
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
decode_method: str='attention_rescoring',
num_decoding_left_chunks: int=-1,
ckpt_path: Optional[os.PathLike]=None):
"""
3 years ago
Init model and other resources from a specific path.
"""
logger.info("start to init the model")
3 years ago
# default max_len: unit:second
self.max_len = 50
if hasattr(self, 'model'):
logger.info('Model had been initialized.')
return
if cfg_path is None or ckpt_path is None:
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
self.task_resource.set_task_model(tag, version=None)
self.res_path = self.task_resource.res_dir
self.cfg_path = os.path.join(
self.res_path, self.task_resource.res_dict['cfg_path'])
self.ckpt_path = os.path.join(
self.res_path,
self.task_resource.res_dict['ckpt_path'] + ".pdparams")
logger.info(self.res_path)
3 years ago
else:
self.cfg_path = os.path.abspath(cfg_path)
3 years ago
self.ckpt_path = os.path.abspath(ckpt_path + ".pdparams")
self.res_path = os.path.dirname(
3 years ago
os.path.dirname(os.path.abspath(self.cfg_path)))
logger.info(self.cfg_path)
logger.info(self.ckpt_path)
3 years ago
3 years ago
#Init body.
self.config = CfgNode(new_allowed=True)
3 years ago
self.config.merge_from_file(self.cfg_path)
with UpdateConfig(self.config):
if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix)
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
if "deepspeech2" in model_type:
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
lm_url = self.task_resource.res_dict['lm_url']
lm_md5 = self.task_resource.res_dict['lm_md5']
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in model_type or "transformer" in model_type:
self.config.decode.decoding_method = decode_method
if num_decoding_left_chunks:
assert num_decoding_left_chunks == -1 or num_decoding_left_chunks >= 0, "num_decoding_left_chunks should be -1 or >=0"
self.config.num_decoding_left_chunks = num_decoding_left_chunks
3 years ago
else:
raise Exception("wrong type")
3 years ago
model_name = model_type[:model_type.rindex(
'_')] # model_type: {model_name}_{dataset}
model_class = self.task_resource.get_model_class(model_name)
model_conf = self.config
3 years ago
model = model_class.from_config(model_conf)
self.model = model
self.model.eval()
# load model
3 years ago
model_dict = paddle.load(self.ckpt_path)
3 years ago
self.model.set_state_dict(model_dict)
# compute the max len limit
if "conformer" in model_type or "transformer" in model_type:
# in transformer like model, we may use the subsample rate cnn network
subsample_rate = self.model.subsampling_rate()
frame_shift_ms = self.config.preprocess_config.process[0][
'n_shift'] / self.config.preprocess_config.process[0]['fs']
max_len = self.model.encoder.embed.pos_enc.max_len
if self.config.encoder_conf.get("max_len", None):
max_len = self.config.encoder_conf.max_len
self.max_len = frame_shift_ms * max_len * subsample_rate
logger.info(
f"The asr server limit max duration len: {self.max_len}")
def preprocess(self, model_type: str, input: Union[str, os.PathLike]):
"""
3 years ago
Input preprocess and return paddle.Tensor stored in self.input.
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
"""
3 years ago
audio_file = input
if isinstance(audio_file, (str, os.PathLike)):
logger.info("Preprocess audio_file:" + audio_file)
3 years ago
# Get the object for feature extraction
if "deepspeech2" in model_type or "conformer" in model_type or "transformer" in model_type:
3 years ago
logger.info("get the preprocess conf")
preprocess_conf = self.config.preprocess_config
3 years ago
preprocess_args = {"train": False}
preprocessing = Transformation(preprocess_conf)
logger.info("read the audio file")
audio, audio_sample_rate = soundfile.read(
3 years ago
audio_file, dtype="int16", always_2d=True)
if self.change_format:
if audio.shape[1] >= 2:
audio = audio.mean(axis=1, dtype=np.int16)
else:
audio = audio[:, 0]
3 years ago
# pcm16 -> pcm 32
audio = self._pcm16to32(audio)
3 years ago
audio = librosa.resample(
audio,
orig_sr=audio_sample_rate,
target_sr=self.sample_rate)
audio_sample_rate = self.sample_rate
3 years ago
# pcm32 -> pcm 16
audio = self._pcm32to16(audio)
else:
audio = audio[:, 0]
3 years ago
logger.info(f"audio shape: {audio.shape}")
# fbank
audio = preprocessing(audio, **preprocess_args)
audio_len = paddle.to_tensor(audio.shape[0])
audio = paddle.to_tensor(audio, dtype='float32').unsqueeze(axis=0)
self._inputs["audio"] = audio
self._inputs["audio_len"] = audio_len
logger.info(f"audio feat shape: {audio.shape}")
3 years ago
else:
raise Exception("wrong type")
logger.info("audio feat process success")
@paddle.no_grad()
def infer(self, model_type: str):
"""
3 years ago
Model inference and result stored in self.output.
"""
logger.info("start to infer the model to get the output")
cfg = self.config.decode
audio = self._inputs["audio"]
audio_len = self._inputs["audio_len"]
if "deepspeech2" in model_type:
decode_batch_size = audio.shape[0]
self.model.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
result_transcripts = self.model.decode(audio, audio_len)
self.model.decoder.del_decoder()
self._outputs["result"] = result_transcripts[0]
3 years ago
3 years ago
elif "conformer" in model_type or "transformer" in model_type:
3 years ago
logger.info(
f"we will use the transformer like model : {model_type}")
try:
result_transcripts = self.model.decode(
audio,
audio_len,
text_feature=self.text_feature,
decoding_method=cfg.decoding_method,
beam_size=cfg.beam_size,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
self._outputs["result"] = result_transcripts[0][0]
except Exception as e:
logger.exception(e)
3 years ago
else:
raise Exception("invalid model name")
def postprocess(self) -> Union[str, os.PathLike]:
"""
Output postprocess and return human-readable results such as texts and audio files.
"""
return self._outputs["result"]
def download_lm(self, url, lm_dir, md5sum):
download_path = get_path_from_url(
url=url,
root_dir=lm_dir,
md5sum=md5sum,
decompress=False, )
def _pcm16to32(self, audio):
assert (audio.dtype == np.int16)
audio = audio.astype("float32")
bits = np.iinfo(np.int16).bits
audio = audio / (2**(bits - 1))
return audio
def _pcm32to16(self, audio):
assert (audio.dtype == np.float32)
bits = np.iinfo(np.int16).bits
audio = audio * (2**(bits - 1))
audio = np.round(audio).astype("int16")
return audio
def _check(self, audio_file: str, sample_rate: int, force_yes: bool):
self.sample_rate = sample_rate
if self.sample_rate != 16000 and self.sample_rate != 8000:
logger.error(
"invalid sample rate, please input --sr 8000 or --sr 16000")
return False
if isinstance(audio_file, (str, os.PathLike)):
if not os.path.isfile(audio_file):
logger.error("Please input the right audio file path")
return False
logger.info("checking the audio file format......")
try:
audio, audio_sample_rate = soundfile.read(
audio_file, dtype="int16", always_2d=True)
audio_duration = audio.shape[0] / audio_sample_rate
if audio_duration > self.max_len:
logger.error(
f"Please input audio file less then {self.max_len} seconds.\n"
)
return False
except Exception as e:
logger.exception(e)
logger.error(
"can not open the audio file, please check the audio file format is 'wav'. \n \
you can try to use sox to change the file format.\n \
For example: \n \
sample rate: 16k \n \
sox input_audio.xx --rate 16k --bits 16 --channels 1 output_audio.wav \n \
sample rate: 8k \n \
sox input_audio.xx --rate 8k --bits 16 --channels 1 output_audio.wav \n \
")
return False
logger.info("The sample rate is %d" % audio_sample_rate)
if audio_sample_rate != self.sample_rate:
logger.warning("The sample rate of the input file is not {}.\n \
The program will resample the wav file to {}.\n \
If the result does not meet your expectations\n \
3 years ago
Please input the 16k 16 bit 1 channel wav file. \
".format(self.sample_rate, self.sample_rate))
if force_yes is False:
while (True):
logger.info(
"Whether to change the sample rate and the channel. Y: change the sample. N: exit the prgream."
)
content = input("Input(Y/N):")
if content.strip() == "Y" or content.strip(
) == "y" or content.strip() == "yes" or content.strip(
) == "Yes":
logger.info(
"change the sampele rate, channel to 16k and 1 channel"
)
break
elif content.strip() == "N" or content.strip(
) == "n" or content.strip() == "no" or content.strip(
) == "No":
logger.info("Exit the program")
return False
else:
logger.warning("Not regular input, please input again")
self.change_format = True
else:
logger.info("The audio file format is right")
self.change_format = False
return True
def execute(self, argv: List[str]) -> bool:
"""
Command line entry.
"""
parser_args = self.parser.parse_args(argv)
model = parser_args.model
lang = parser_args.lang
3 years ago
sample_rate = parser_args.sample_rate
config = parser_args.config
ckpt_path = parser_args.ckpt_path
decode_method = parser_args.decode_method
force_yes = parser_args.yes
rtf = parser_args.rtf
device = parser_args.device
if not parser_args.verbose:
self.disable_task_loggers()
task_source = self.get_input_source(parser_args.input)
task_results = OrderedDict()
has_exceptions = False
for id_, input_ in task_source.items():
try:
res = self(input_, model, lang, sample_rate, config, ckpt_path,
decode_method, force_yes, rtf, device)
task_results[id_] = res
except Exception as e:
has_exceptions = True
task_results[id_] = f'{e.__class__.__name__}: {e}'
if rtf:
self.show_rtf(CLI_TIMER[self.__class__.__name__])
self.process_task_results(parser_args.input, task_results,
parser_args.job_dump_result)
if has_exceptions:
return False
else:
return True
3 years ago
@stats_wrapper
def __call__(self,
audio_file: os.PathLike,
model: str='conformer_wenetspeech',
lang: str='zh',
sample_rate: int=16000,
config: os.PathLike=None,
ckpt_path: os.PathLike=None,
decode_method: str='attention_rescoring',
num_decoding_left_chunks: int=-1,
force_yes: bool=False,
rtf: bool=False,
device=paddle.get_device()):
"""
3 years ago
Python API to call an executor.
"""
audio_file = os.path.abspath(audio_file)
paddle.set_device(device)
self._init_from_path(model, lang, sample_rate, config, decode_method,
num_decoding_left_chunks, ckpt_path)
3 years ago
if not self._check(audio_file, sample_rate, force_yes):
sys.exit(-1)
if rtf:
k = self.__class__.__name__
CLI_TIMER[k]['start'].append(time.time())
self.preprocess(model, audio_file)
self.infer(model)
res = self.postprocess() # Retrieve result of asr.
if rtf:
CLI_TIMER[k]['end'].append(time.time())
audio, audio_sample_rate = soundfile.read(
audio_file, dtype="int16", always_2d=True)
CLI_TIMER[k]['extra'].append(audio.shape[0] / audio_sample_rate)
3 years ago
return res