|
|
|
@ -119,7 +119,8 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
lang: str='zh',
|
|
|
|
|
model_sample_rate: int=16000,
|
|
|
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
|
|
|
ckpt_path: Optional[os.PathLike]=None):
|
|
|
|
|
ckpt_path: Optional[os.PathLike]=None,
|
|
|
|
|
device: str='cpu'):
|
|
|
|
|
"""
|
|
|
|
|
Init model and other resources from a specific path.
|
|
|
|
|
"""
|
|
|
|
@ -140,12 +141,8 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
res_path = os.path.dirname(
|
|
|
|
|
os.path.dirname(os.path.abspath(self.cfg_path)))
|
|
|
|
|
|
|
|
|
|
# Enter the path of model root
|
|
|
|
|
os.chdir(res_path)
|
|
|
|
|
|
|
|
|
|
#Init body.
|
|
|
|
|
parser_args = self.parser_args
|
|
|
|
|
paddle.set_device(parser_args.device)
|
|
|
|
|
paddle.set_device(device)
|
|
|
|
|
self.config = CfgNode(new_allowed=True)
|
|
|
|
|
self.config.merge_from_file(self.cfg_path)
|
|
|
|
|
self.config.decoding.decoding_method = "attention_rescoring"
|
|
|
|
@ -153,29 +150,35 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
logger.info(model_conf)
|
|
|
|
|
|
|
|
|
|
with UpdateConfig(model_conf):
|
|
|
|
|
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
|
|
|
|
|
if model_type == "ds2_online" or model_type == "ds2_offline":
|
|
|
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
|
|
|
self.config.collator.vocab_filepath = os.path.join(
|
|
|
|
|
res_path, self.config.collator.vocab_filepath)
|
|
|
|
|
self.config.collator.vocab_filepath = os.path.join(
|
|
|
|
|
self.config.collator.mean_std_filepath = os.path.join(
|
|
|
|
|
res_path, self.config.collator.cmvn_path)
|
|
|
|
|
self.collate_fn_test = SpeechCollator.from_config(self.config)
|
|
|
|
|
text_feature = TextFeaturizer(
|
|
|
|
|
unit_type=self.config.collator.unit_type,
|
|
|
|
|
vocab_filepath=self.config.collator.vocab_filepath,
|
|
|
|
|
spm_model_prefix=self.config.collator.spm_model_prefix)
|
|
|
|
|
model_conf.input_dim = self.collate_fn_test.feature_size
|
|
|
|
|
model_conf.output_dim = self.text_feature.vocab_size
|
|
|
|
|
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
|
|
|
|
|
|
|
|
|
|
model_conf.output_dim = text_feature.vocab_size
|
|
|
|
|
elif model_type == "conformer" or model_type == "transformer" or model_type == "wenetspeech":
|
|
|
|
|
self.config.collator.vocab_filepath = os.path.join(
|
|
|
|
|
res_path, self.config.collator.vocab_filepath)
|
|
|
|
|
self.text_feature = TextFeaturizer(
|
|
|
|
|
text_feature = TextFeaturizer(
|
|
|
|
|
unit_type=self.config.collator.unit_type,
|
|
|
|
|
vocab_filepath=self.config.collator.vocab_filepath,
|
|
|
|
|
spm_model_prefix=self.config.collator.spm_model_prefix)
|
|
|
|
|
model_conf.input_dim = self.config.collator.feat_dim
|
|
|
|
|
model_conf.output_dim = self.text_feature.vocab_size
|
|
|
|
|
model_conf.output_dim = text_feature.vocab_size
|
|
|
|
|
else:
|
|
|
|
|
raise Exception("wrong type")
|
|
|
|
|
self.config.freeze()
|
|
|
|
|
model_class = dynamic_import(parser_args.model, model_alias)
|
|
|
|
|
# Enter the path of model root
|
|
|
|
|
os.chdir(res_path)
|
|
|
|
|
|
|
|
|
|
model_class = dynamic_import(model_type, model_alias)
|
|
|
|
|
model = model_class.from_config(model_conf)
|
|
|
|
|
self.model = model
|
|
|
|
|
self.model.eval()
|
|
|
|
@ -185,31 +188,31 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
model_dict = paddle.load(params_path)
|
|
|
|
|
self.model.set_state_dict(model_dict)
|
|
|
|
|
|
|
|
|
|
def preprocess(self, input: Union[str, os.PathLike]):
|
|
|
|
|
def preprocess(self, model_type: str, input: Union[str, os.PathLike]):
|
|
|
|
|
"""
|
|
|
|
|
Input preprocess and return paddle.Tensor stored in self.input.
|
|
|
|
|
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
parser_args = self.parser_args
|
|
|
|
|
config = self.config
|
|
|
|
|
audio_file = input
|
|
|
|
|
logger.info("Preprocess audio_file:" + audio_file)
|
|
|
|
|
|
|
|
|
|
self.sr = config.collator.target_sample_rate
|
|
|
|
|
config_target_sample_rate = self.config.collator.target_sample_rate
|
|
|
|
|
|
|
|
|
|
# Get the object for feature extraction
|
|
|
|
|
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
|
|
|
|
|
if model_type == "ds2_online" or model_type == "ds2_offline":
|
|
|
|
|
audio, _ = self.collate_fn_test.process_utterance(
|
|
|
|
|
audio_file=audio_file, transcript=" ")
|
|
|
|
|
audio_len = audio.shape[0]
|
|
|
|
|
audio = paddle.to_tensor(audio, dtype='float32')
|
|
|
|
|
self.audio_len = paddle.to_tensor(audio_len)
|
|
|
|
|
self.audio = paddle.unsqueeze(audio, axis=0)
|
|
|
|
|
self.vocab_list = collate_fn_test.vocab_list
|
|
|
|
|
logger.info(f"audio feat shape: {self.audio.shape}")
|
|
|
|
|
|
|
|
|
|
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
|
|
|
|
|
audio_len = paddle.to_tensor(audio_len)
|
|
|
|
|
audio = paddle.unsqueeze(audio, axis=0)
|
|
|
|
|
vocab_list = collate_fn_test.vocab_list
|
|
|
|
|
self._inputs["audio"] = audio
|
|
|
|
|
self._inputs["audio_len"] = audio_len
|
|
|
|
|
logger.info(f"audio feat shape: {audio.shape}")
|
|
|
|
|
|
|
|
|
|
elif model_type == "conformer" or model_type == "transformer" or model_type == "wenetspeech":
|
|
|
|
|
logger.info("get the preprocess conf")
|
|
|
|
|
preprocess_conf = os.path.join(
|
|
|
|
|
os.path.dirname(os.path.abspath(self.cfg_path)),
|
|
|
|
@ -235,7 +238,7 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
else:
|
|
|
|
|
audio = audio[:, 0]
|
|
|
|
|
|
|
|
|
|
if sample_rate != self.sr:
|
|
|
|
|
if sample_rate != config_target_sample_rate:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"sample rate error: {sample_rate}, need {self.sr} ")
|
|
|
|
|
sys.exit(-1)
|
|
|
|
@ -243,29 +246,36 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
# fbank
|
|
|
|
|
audio = preprocessing(audio, **preprocess_args)
|
|
|
|
|
|
|
|
|
|
self.audio_len = paddle.to_tensor(audio.shape[0])
|
|
|
|
|
self.audio = paddle.to_tensor(
|
|
|
|
|
audio, dtype='float32').unsqueeze(axis=0)
|
|
|
|
|
logger.info(f"audio feat shape: {self.audio.shape}")
|
|
|
|
|
audio_len = paddle.to_tensor(audio.shape[0])
|
|
|
|
|
audio = paddle.to_tensor(audio, dtype='float32').unsqueeze(axis=0)
|
|
|
|
|
text_feature = TextFeaturizer(
|
|
|
|
|
unit_type=self.config.collator.unit_type,
|
|
|
|
|
vocab_filepath=self.config.collator.vocab_filepath,
|
|
|
|
|
spm_model_prefix=self.config.collator.spm_model_prefix)
|
|
|
|
|
self._inputs["audio"] = audio
|
|
|
|
|
self._inputs["audio_len"] = audio_len
|
|
|
|
|
logger.info(f"audio feat shape: {audio.shape}")
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
raise Exception("wrong type")
|
|
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
|
def infer(self):
|
|
|
|
|
def infer(self, model_type: str):
|
|
|
|
|
"""
|
|
|
|
|
Model inference and result stored in self.output.
|
|
|
|
|
"""
|
|
|
|
|
text_feature = TextFeaturizer(
|
|
|
|
|
unit_type=self.config.collator.unit_type,
|
|
|
|
|
vocab_filepath=self.config.collator.vocab_filepath,
|
|
|
|
|
spm_model_prefix=self.config.collator.spm_model_prefix)
|
|
|
|
|
cfg = self.config.decoding
|
|
|
|
|
parser_args = self.parser_args
|
|
|
|
|
audio = self.audio
|
|
|
|
|
audio_len = self.audio_len
|
|
|
|
|
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
|
|
|
|
|
vocab_list = self.vocab_list
|
|
|
|
|
audio = self._inputs["audio"]
|
|
|
|
|
audio_len = self._inputs["audio_len"]
|
|
|
|
|
if model_type == "ds2_online" or model_type == "ds2_offline":
|
|
|
|
|
result_transcripts = self.model.decode(
|
|
|
|
|
audio,
|
|
|
|
|
audio_len,
|
|
|
|
|
vocab_list,
|
|
|
|
|
text_feature.vocab_list,
|
|
|
|
|
decoding_method=cfg.decoding_method,
|
|
|
|
|
lang_model_path=cfg.lang_model_path,
|
|
|
|
|
beam_alpha=cfg.alpha,
|
|
|
|
@ -274,14 +284,13 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
cutoff_prob=cfg.cutoff_prob,
|
|
|
|
|
cutoff_top_n=cfg.cutoff_top_n,
|
|
|
|
|
num_processes=cfg.num_proc_bsearch)
|
|
|
|
|
self.result_transcripts = result_transcripts[0]
|
|
|
|
|
self._outputs["result"] = result_transcripts[0]
|
|
|
|
|
|
|
|
|
|
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
|
|
|
|
|
text_feature = self.text_feature
|
|
|
|
|
elif model_type == "conformer" or model_type == "transformer" or model_type == "wenetspeech":
|
|
|
|
|
result_transcripts = self.model.decode(
|
|
|
|
|
audio,
|
|
|
|
|
audio_len,
|
|
|
|
|
text_feature=self.text_feature,
|
|
|
|
|
text_feature=text_feature,
|
|
|
|
|
decoding_method=cfg.decoding_method,
|
|
|
|
|
lang_model_path=cfg.lang_model_path,
|
|
|
|
|
beam_alpha=cfg.alpha,
|
|
|
|
@ -294,23 +303,22 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
decoding_chunk_size=cfg.decoding_chunk_size,
|
|
|
|
|
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
|
|
|
|
|
simulate_streaming=cfg.simulate_streaming)
|
|
|
|
|
self.result_transcripts = result_transcripts[0][0]
|
|
|
|
|
self._outputs["result"] = result_transcripts[0][0]
|
|
|
|
|
else:
|
|
|
|
|
raise Exception("invalid model name")
|
|
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def postprocess(self) -> Union[str, os.PathLike]:
|
|
|
|
|
"""
|
|
|
|
|
Output postprocess and return human-readable results such as texts and audio files.
|
|
|
|
|
"""
|
|
|
|
|
return self.result_transcripts
|
|
|
|
|
return self._outputs["result"]
|
|
|
|
|
|
|
|
|
|
def _check(self, audio_file: str, model_sample_rate: int):
|
|
|
|
|
self.target_sample_rate = model_sample_rate
|
|
|
|
|
if self.target_sample_rate != 16000 and self.target_sample_rate != 8000:
|
|
|
|
|
logger.error(
|
|
|
|
|
"please input --model_sample_rate 8000 or --model_sample_rate 16000")
|
|
|
|
|
"please input --model_sample_rate 8000 or --model_sample_rate 16000"
|
|
|
|
|
)
|
|
|
|
|
raise Exception("invalid sample rate")
|
|
|
|
|
sys.exit(-1)
|
|
|
|
|
|
|
|
|
@ -336,11 +344,13 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
sys.exit(-1)
|
|
|
|
|
logger.info("The sample rate is %d" % sample_rate)
|
|
|
|
|
if sample_rate != self.target_sample_rate:
|
|
|
|
|
logger.warning("The sample rate of the input file is not {}.\n \
|
|
|
|
|
logger.warning(
|
|
|
|
|
"The sample rate of the input file is not {}.\n \
|
|
|
|
|
The program will resample the wav file to {}.\n \
|
|
|
|
|
If the result does not meet your expectations,\n \
|
|
|
|
|
Please input the 16k 16bit 1 channel wav file. \
|
|
|
|
|
".format(self.target_sample_rate, self.target_sample_rate))
|
|
|
|
|
"
|
|
|
|
|
.format(self.target_sample_rate, self.target_sample_rate))
|
|
|
|
|
while (True):
|
|
|
|
|
logger.info(
|
|
|
|
|
"Whether to change the sample rate and the channel. Y: change the sample. N: exit the prgream."
|
|
|
|
@ -367,34 +377,36 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
"""
|
|
|
|
|
Command line entry.
|
|
|
|
|
"""
|
|
|
|
|
self.parser_args = self.parser.parse_args(argv)
|
|
|
|
|
parser_args = self.parser.parse_args(argv)
|
|
|
|
|
|
|
|
|
|
model = self.parser_args.model
|
|
|
|
|
lang = self.parser_args.lang
|
|
|
|
|
model_sample_rate = self.parser_args.model_sample_rate
|
|
|
|
|
config = self.parser_args.config
|
|
|
|
|
ckpt_path = self.parser_args.ckpt_path
|
|
|
|
|
audio_file = os.path.abspath(self.parser_args.input)
|
|
|
|
|
device = self.parser_args.device
|
|
|
|
|
model = parser_args.model
|
|
|
|
|
lang = parser_args.lang
|
|
|
|
|
model_sample_rate = parser_args.model_sample_rate
|
|
|
|
|
config = parser_args.config
|
|
|
|
|
ckpt_path = parser_args.ckpt_path
|
|
|
|
|
audio_file = parser_args.input
|
|
|
|
|
device = parser_args.device
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
res = self(model, lang, model_sample_rate, config, ckpt_path, audio_file,
|
|
|
|
|
device)
|
|
|
|
|
res = self(model, lang, model_sample_rate, config, ckpt_path,
|
|
|
|
|
audio_file, device)
|
|
|
|
|
logger.info('ASR Result: {}'.format(res))
|
|
|
|
|
return True
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(e)
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
def __call__(self, model, lang, model_sample_rate, config, ckpt_path, audio_file,
|
|
|
|
|
device):
|
|
|
|
|
def __call__(self, model, lang, model_sample_rate, config, ckpt_path,
|
|
|
|
|
audio_file, device):
|
|
|
|
|
"""
|
|
|
|
|
Python API to call an executor.
|
|
|
|
|
"""
|
|
|
|
|
audio_file = os.path.abspath(audio_file)
|
|
|
|
|
self._check(audio_file, model_sample_rate)
|
|
|
|
|
self._init_from_path(model, lang, model_sample_rate, config, ckpt_path)
|
|
|
|
|
self.preprocess(audio_file)
|
|
|
|
|
self.infer()
|
|
|
|
|
self._init_from_path(model, lang, model_sample_rate, config, ckpt_path,
|
|
|
|
|
device)
|
|
|
|
|
self.preprocess(model, audio_file)
|
|
|
|
|
self.infer(model)
|
|
|
|
|
res = self.postprocess() # Retrieve result of asr.
|
|
|
|
|
|
|
|
|
|
return res
|
|
|
|
|