|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
import pickle
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle import inference
|
|
|
|
|
|
|
|
from paddlespeech.s2t.models.ds2 import DeepSpeech2InferModel
|
|
|
|
from paddlespeech.s2t.models.ds2 import DeepSpeech2Model
|
|
|
|
|
|
|
|
|
|
|
|
class TestDeepSpeech2Model(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
|
|
paddle.set_device('cpu')
|
|
|
|
|
|
|
|
self.batch_size = 2
|
|
|
|
self.feat_dim = 161
|
|
|
|
max_len = 210
|
|
|
|
|
|
|
|
# (B, T, D)
|
|
|
|
audio = np.random.randn(self.batch_size, max_len, self.feat_dim)
|
|
|
|
audio_len = np.random.randint(max_len, size=self.batch_size)
|
|
|
|
audio_len[-1] = max_len
|
|
|
|
# (B, U)
|
|
|
|
text = np.array([[1, 2], [1, 2]])
|
|
|
|
text_len = np.array([2] * self.batch_size)
|
|
|
|
|
|
|
|
self.audio = paddle.to_tensor(audio, dtype='float32')
|
|
|
|
self.audio_len = paddle.to_tensor(audio_len, dtype='int64')
|
|
|
|
self.text = paddle.to_tensor(text, dtype='int32')
|
|
|
|
self.text_len = paddle.to_tensor(text_len, dtype='int64')
|
|
|
|
|
|
|
|
def test_ds2_1(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=False)
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_2(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=True)
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_3(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=False)
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_4(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=True)
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_5(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=False)
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_6(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
rnn_direction='bidirect',
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=False)
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_7(self):
|
|
|
|
use_gru = False
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=1,
|
|
|
|
rnn_size=1024,
|
|
|
|
rnn_direction='forward',
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=use_gru)
|
|
|
|
model.eval()
|
|
|
|
paddle.device.set_device("cpu")
|
|
|
|
de_ch_size = 8
|
|
|
|
|
|
|
|
eouts, eouts_lens, final_state_h_box, final_state_c_box = model.encoder(
|
|
|
|
self.audio, self.audio_len)
|
|
|
|
eouts_by_chk_list, eouts_lens_by_chk_list, final_state_h_box_chk, final_state_c_box_chk = model.encoder.forward_chunk_by_chunk(
|
|
|
|
self.audio, self.audio_len, de_ch_size)
|
|
|
|
eouts_by_chk = paddle.concat(eouts_by_chk_list, axis=1)
|
|
|
|
eouts_lens_by_chk = paddle.add_n(eouts_lens_by_chk_list)
|
|
|
|
decode_max_len = eouts.shape[1]
|
|
|
|
eouts_by_chk = eouts_by_chk[:, :decode_max_len, :]
|
|
|
|
self.assertEqual(paddle.allclose(eouts_by_chk, eouts), True)
|
|
|
|
self.assertEqual(
|
|
|
|
paddle.allclose(final_state_h_box, final_state_h_box_chk), True)
|
|
|
|
if use_gru is False:
|
|
|
|
self.assertEqual(
|
|
|
|
paddle.allclose(final_state_c_box, final_state_c_box_chk), True)
|
|
|
|
|
|
|
|
def test_ds2_8(self):
|
|
|
|
use_gru = True
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=1,
|
|
|
|
rnn_size=1024,
|
|
|
|
rnn_direction='forward',
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=use_gru)
|
|
|
|
model.eval()
|
|
|
|
paddle.device.set_device("cpu")
|
|
|
|
de_ch_size = 8
|
|
|
|
|
|
|
|
eouts, eouts_lens, final_state_h_box, final_state_c_box = model.encoder(
|
|
|
|
self.audio, self.audio_len)
|
|
|
|
eouts_by_chk_list, eouts_lens_by_chk_list, final_state_h_box_chk, final_state_c_box_chk = model.encoder.forward_chunk_by_chunk(
|
|
|
|
self.audio, self.audio_len, de_ch_size)
|
|
|
|
eouts_by_chk = paddle.concat(eouts_by_chk_list, axis=1)
|
|
|
|
eouts_lens_by_chk = paddle.add_n(eouts_lens_by_chk_list)
|
|
|
|
decode_max_len = eouts.shape[1]
|
|
|
|
eouts_by_chk = eouts_by_chk[:, :decode_max_len, :]
|
|
|
|
self.assertEqual(paddle.allclose(eouts_by_chk, eouts), True)
|
|
|
|
self.assertEqual(
|
|
|
|
paddle.allclose(final_state_h_box, final_state_h_box_chk), True)
|
|
|
|
if use_gru is False:
|
|
|
|
self.assertEqual(
|
|
|
|
paddle.allclose(final_state_c_box, final_state_c_box_chk), True)
|
|
|
|
|
|
|
|
|
|
|
|
class TestDeepSpeech2StaticModelOnline(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
|
|
export_prefix = "exp/deepspeech2_online/checkpoints/test_export"
|
|
|
|
if not os.path.exists(os.path.dirname(export_prefix)):
|
|
|
|
os.makedirs(os.path.dirname(export_prefix), mode=0o755)
|
|
|
|
infer_model = DeepSpeech2InferModel(
|
|
|
|
feat_size=161,
|
|
|
|
dict_size=4233,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=5,
|
|
|
|
rnn_size=1024,
|
|
|
|
num_fc_layers=0,
|
|
|
|
fc_layers_size_list=[-1],
|
|
|
|
use_gru=False)
|
|
|
|
static_model = infer_model.export()
|
|
|
|
paddle.jit.save(static_model, export_prefix)
|
|
|
|
|
|
|
|
with open("test_data/static_ds2online_inputs.pickle", "rb") as f:
|
|
|
|
self.data_dict = pickle.load(f)
|
|
|
|
|
|
|
|
self.setup_model(export_prefix)
|
|
|
|
|
|
|
|
def setup_model(self, export_prefix):
|
|
|
|
deepspeech_config = inference.Config(export_prefix + ".pdmodel",
|
|
|
|
export_prefix + ".pdiparams")
|
|
|
|
if ('CUDA_VISIBLE_DEVICES' in os.environ.keys() and
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'].strip() != ''):
|
|
|
|
deepspeech_config.enable_use_gpu(100, 0)
|
|
|
|
deepspeech_config.enable_memory_optim()
|
|
|
|
deepspeech_predictor = inference.create_predictor(deepspeech_config)
|
|
|
|
self.predictor = deepspeech_predictor
|
|
|
|
|
|
|
|
def test_unit(self):
|
|
|
|
input_names = self.predictor.get_input_names()
|
|
|
|
audio_handle = self.predictor.get_input_handle(input_names[0])
|
|
|
|
audio_len_handle = self.predictor.get_input_handle(input_names[1])
|
|
|
|
h_box_handle = self.predictor.get_input_handle(input_names[2])
|
|
|
|
c_box_handle = self.predictor.get_input_handle(input_names[3])
|
|
|
|
|
|
|
|
x_chunk = self.data_dict["audio_chunk"]
|
|
|
|
x_chunk_lens = self.data_dict["audio_chunk_lens"]
|
|
|
|
chunk_state_h_box = self.data_dict["chunk_state_h_box"]
|
|
|
|
chunk_state_c_box = self.data_dict["chunk_state_c_bos"]
|
|
|
|
|
|
|
|
audio_handle.reshape(x_chunk.shape)
|
|
|
|
audio_handle.copy_from_cpu(x_chunk)
|
|
|
|
|
|
|
|
audio_len_handle.reshape(x_chunk_lens.shape)
|
|
|
|
audio_len_handle.copy_from_cpu(x_chunk_lens)
|
|
|
|
|
|
|
|
h_box_handle.reshape(chunk_state_h_box.shape)
|
|
|
|
h_box_handle.copy_from_cpu(chunk_state_h_box)
|
|
|
|
|
|
|
|
c_box_handle.reshape(chunk_state_c_box.shape)
|
|
|
|
c_box_handle.copy_from_cpu(chunk_state_c_box)
|
|
|
|
|
|
|
|
output_names = self.predictor.get_output_names()
|
|
|
|
output_handle = self.predictor.get_output_handle(output_names[0])
|
|
|
|
output_lens_handle = self.predictor.get_output_handle(output_names[1])
|
|
|
|
output_state_h_handle = self.predictor.get_output_handle(
|
|
|
|
output_names[2])
|
|
|
|
output_state_c_handle = self.predictor.get_output_handle(
|
|
|
|
output_names[3])
|
|
|
|
self.predictor.run()
|
|
|
|
|
|
|
|
output_chunk_probs = output_handle.copy_to_cpu()
|
|
|
|
output_chunk_lens = output_lens_handle.copy_to_cpu()
|
|
|
|
chunk_state_h_box = output_state_h_handle.copy_to_cpu()
|
|
|
|
chunk_state_c_box = output_state_c_handle.copy_to_cpu()
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|