# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import unittest import numpy as np import paddle from paddle import inference from paddlespeech.s2t.models.ds2 import DeepSpeech2InferModel from paddlespeech.s2t.models.ds2 import DeepSpeech2Model class TestDeepSpeech2Model(unittest.TestCase): def setUp(self): paddle.set_device('cpu') self.batch_size = 2 self.feat_dim = 161 max_len = 210 # (B, T, D) audio = np.random.randn(self.batch_size, max_len, self.feat_dim) audio_len = np.random.randint(max_len, size=self.batch_size) audio_len[-1] = max_len # (B, U) text = np.array([[1, 2], [1, 2]]) text_len = np.array([2] * self.batch_size) self.audio = paddle.to_tensor(audio, dtype='float32') self.audio_len = paddle.to_tensor(audio_len, dtype='int64') self.text = paddle.to_tensor(text, dtype='int32') self.text_len = paddle.to_tensor(text_len, dtype='int64') def test_ds2_1(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=False) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_2(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=True) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_3(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=False) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_4(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=True) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_5(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=False) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_6(self): model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, rnn_direction='bidirect', num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=False) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_7(self): use_gru = False model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=1, rnn_size=1024, rnn_direction='forward', num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=use_gru) model.eval() paddle.device.set_device("cpu") de_ch_size = 8 eouts, eouts_lens, final_state_h_box, final_state_c_box = model.encoder( self.audio, self.audio_len) eouts_by_chk_list, eouts_lens_by_chk_list, final_state_h_box_chk, final_state_c_box_chk = model.encoder.forward_chunk_by_chunk( self.audio, self.audio_len, de_ch_size) eouts_by_chk = paddle.concat(eouts_by_chk_list, axis=1) eouts_lens_by_chk = paddle.add_n(eouts_lens_by_chk_list) decode_max_len = eouts.shape[1] eouts_by_chk = eouts_by_chk[:, :decode_max_len, :] self.assertEqual(paddle.allclose(eouts_by_chk, eouts), True) self.assertEqual( paddle.allclose(final_state_h_box, final_state_h_box_chk), True) if use_gru is False: self.assertEqual( paddle.allclose(final_state_c_box, final_state_c_box_chk), True) def test_ds2_8(self): use_gru = True model = DeepSpeech2Model( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=1, rnn_size=1024, rnn_direction='forward', num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=use_gru) model.eval() paddle.device.set_device("cpu") de_ch_size = 8 eouts, eouts_lens, final_state_h_box, final_state_c_box = model.encoder( self.audio, self.audio_len) eouts_by_chk_list, eouts_lens_by_chk_list, final_state_h_box_chk, final_state_c_box_chk = model.encoder.forward_chunk_by_chunk( self.audio, self.audio_len, de_ch_size) eouts_by_chk = paddle.concat(eouts_by_chk_list, axis=1) eouts_lens_by_chk = paddle.add_n(eouts_lens_by_chk_list) decode_max_len = eouts.shape[1] eouts_by_chk = eouts_by_chk[:, :decode_max_len, :] self.assertEqual(paddle.allclose(eouts_by_chk, eouts), True) self.assertEqual( paddle.allclose(final_state_h_box, final_state_h_box_chk), True) if use_gru is False: self.assertEqual( paddle.allclose(final_state_c_box, final_state_c_box_chk), True) class TestDeepSpeech2StaticModelOnline(unittest.TestCase): def setUp(self): export_prefix = "exp/deepspeech2_online/checkpoints/test_export" if not os.path.exists(os.path.dirname(export_prefix)): os.makedirs(os.path.dirname(export_prefix), mode=0o755) infer_model = DeepSpeech2InferModel( feat_size=161, dict_size=4233, num_conv_layers=2, num_rnn_layers=5, rnn_size=1024, num_fc_layers=0, fc_layers_size_list=[-1], use_gru=False) static_model = infer_model.export() paddle.jit.save(static_model, export_prefix) with open("test_data/static_ds2online_inputs.pickle", "rb") as f: self.data_dict = pickle.load(f) self.setup_model(export_prefix) def setup_model(self, export_prefix): deepspeech_config = inference.Config(export_prefix + ".pdmodel", export_prefix + ".pdiparams") if ('CUDA_VISIBLE_DEVICES' in os.environ.keys() and os.environ['CUDA_VISIBLE_DEVICES'].strip() != ''): deepspeech_config.enable_use_gpu(100, 0) deepspeech_config.enable_memory_optim() deepspeech_predictor = inference.create_predictor(deepspeech_config) self.predictor = deepspeech_predictor def test_unit(self): input_names = self.predictor.get_input_names() audio_handle = self.predictor.get_input_handle(input_names[0]) audio_len_handle = self.predictor.get_input_handle(input_names[1]) h_box_handle = self.predictor.get_input_handle(input_names[2]) c_box_handle = self.predictor.get_input_handle(input_names[3]) x_chunk = self.data_dict["audio_chunk"] x_chunk_lens = self.data_dict["audio_chunk_lens"] chunk_state_h_box = self.data_dict["chunk_state_h_box"] chunk_state_c_box = self.data_dict["chunk_state_c_bos"] audio_handle.reshape(x_chunk.shape) audio_handle.copy_from_cpu(x_chunk) audio_len_handle.reshape(x_chunk_lens.shape) audio_len_handle.copy_from_cpu(x_chunk_lens) h_box_handle.reshape(chunk_state_h_box.shape) h_box_handle.copy_from_cpu(chunk_state_h_box) c_box_handle.reshape(chunk_state_c_box.shape) c_box_handle.copy_from_cpu(chunk_state_c_box) output_names = self.predictor.get_output_names() output_handle = self.predictor.get_output_handle(output_names[0]) output_lens_handle = self.predictor.get_output_handle(output_names[1]) output_state_h_handle = self.predictor.get_output_handle( output_names[2]) output_state_c_handle = self.predictor.get_output_handle( output_names[3]) self.predictor.run() output_chunk_probs = output_handle.copy_to_cpu() output_chunk_lens = output_lens_handle.copy_to_cpu() chunk_state_h_box = output_state_h_handle.copy_to_cpu() chunk_state_c_box = output_state_c_handle.copy_to_cpu() return True if __name__ == '__main__': unittest.main()