|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
from paddle.fluid import framework
|
|
|
|
from paddle.fluid import unique_name
|
|
|
|
from paddle.fluid.core import VarDesc
|
|
|
|
from paddle.fluid.initializer import MSRAInitializer
|
|
|
|
|
|
|
|
__all__ = ['KaimingUniform']
|
|
|
|
|
|
|
|
|
|
|
|
class KaimingUniform(MSRAInitializer):
|
|
|
|
r"""Implements the Kaiming Uniform initializer
|
|
|
|
|
|
|
|
This class implements the weight initialization from the paper
|
|
|
|
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
|
|
|
|
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
|
|
|
|
by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
|
|
|
|
robust initialization method that particularly considers the rectifier
|
|
|
|
nonlinearities.
|
|
|
|
|
|
|
|
In case of Uniform distribution, the range is [-x, x], where
|
|
|
|
|
|
|
|
.. math::
|
|
|
|
|
|
|
|
x = \sqrt{\frac{1.0}{fan\_in}}
|
|
|
|
|
|
|
|
In case of Normal distribution, the mean is 0 and the standard deviation
|
|
|
|
is
|
|
|
|
|
|
|
|
.. math::
|
|
|
|
|
|
|
|
\sqrt{\\frac{2.0}{fan\_in}}
|
|
|
|
|
|
|
|
Args:
|
|
|
|
fan_in (float32|None): fan_in for Kaiming uniform Initializer. If None, it is\
|
|
|
|
inferred from the variable. default is None.
|
|
|
|
|
|
|
|
Note:
|
|
|
|
It is recommended to set fan_in to None for most cases.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
|
|
|
linear = nn.Linear(2,
|
|
|
|
4,
|
|
|
|
weight_attr=nn.initializer.KaimingUniform())
|
|
|
|
data = paddle.rand([30, 10, 2], dtype='float32')
|
|
|
|
res = linear(data)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, fan_in=None):
|
|
|
|
super(KaimingUniform, self).__init__(
|
|
|
|
uniform=True, fan_in=fan_in, seed=0)
|
|
|
|
|
|
|
|
def __call__(self, var, block=None):
|
|
|
|
"""Initialize the input tensor with MSRA initialization.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
var(Tensor): Tensor that needs to be initialized.
|
|
|
|
block(Block, optional): The block in which initialization ops
|
|
|
|
should be added. Used in static graph only, default None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The initialization op
|
|
|
|
"""
|
|
|
|
block = self._check_block(block)
|
|
|
|
|
|
|
|
assert isinstance(var, framework.Variable)
|
|
|
|
assert isinstance(block, framework.Block)
|
|
|
|
f_in, f_out = self._compute_fans(var)
|
|
|
|
|
|
|
|
# If fan_in is passed, use it
|
|
|
|
fan_in = f_in if self._fan_in is None else self._fan_in
|
|
|
|
|
|
|
|
if self._seed == 0:
|
|
|
|
self._seed = block.program.random_seed
|
|
|
|
|
|
|
|
# to be compatible of fp16 initalizers
|
|
|
|
if var.dtype == VarDesc.VarType.FP16 or (
|
|
|
|
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
|
|
|
|
out_dtype = VarDesc.VarType.FP32
|
|
|
|
out_var = block.create_var(
|
|
|
|
name=unique_name.generate(
|
|
|
|
".".join(['masra_init', var.name, 'tmp'])),
|
|
|
|
shape=var.shape,
|
|
|
|
dtype=out_dtype,
|
|
|
|
type=VarDesc.VarType.LOD_TENSOR,
|
|
|
|
persistable=False)
|
|
|
|
else:
|
|
|
|
out_dtype = var.dtype
|
|
|
|
out_var = var
|
|
|
|
|
|
|
|
if self._uniform:
|
|
|
|
limit = np.sqrt(1.0 / float(fan_in))
|
|
|
|
op = block.append_op(
|
|
|
|
type="uniform_random",
|
|
|
|
inputs={},
|
|
|
|
outputs={"Out": out_var},
|
|
|
|
attrs={
|
|
|
|
"shape": out_var.shape,
|
|
|
|
"dtype": int(out_dtype),
|
|
|
|
"min": -limit,
|
|
|
|
"max": limit,
|
|
|
|
"seed": self._seed
|
|
|
|
},
|
|
|
|
stop_gradient=True)
|
|
|
|
|
|
|
|
else:
|
|
|
|
std = np.sqrt(2.0 / float(fan_in))
|
|
|
|
op = block.append_op(
|
|
|
|
type="gaussian_random",
|
|
|
|
outputs={"Out": out_var},
|
|
|
|
attrs={
|
|
|
|
"shape": out_var.shape,
|
|
|
|
"dtype": int(out_dtype),
|
|
|
|
"mean": 0.0,
|
|
|
|
"std": std,
|
|
|
|
"seed": self._seed
|
|
|
|
},
|
|
|
|
stop_gradient=True)
|
|
|
|
|
|
|
|
if var.dtype == VarDesc.VarType.FP16 or (
|
|
|
|
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
|
|
|
|
block.append_op(
|
|
|
|
type="cast",
|
|
|
|
inputs={"X": out_var},
|
|
|
|
outputs={"Out": var},
|
|
|
|
attrs={"in_dtype": out_var.dtype,
|
|
|
|
"out_dtype": var.dtype})
|
|
|
|
|
|
|
|
if not framework.in_dygraph_mode():
|
|
|
|
var.op = op
|
|
|
|
return op
|
|
|
|
|
|
|
|
|
|
|
|
class DefaultInitializerContext(object):
|
|
|
|
"""
|
|
|
|
egs:
|
|
|
|
with DefaultInitializerContext("kaiming_uniform"):
|
|
|
|
code for setup_model
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, init_type=None):
|
|
|
|
self.init_type = init_type
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
if self.init_type is None:
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
from paddlespeech.s2t.modules import align
|
|
|
|
align.global_init_type = self.init_type
|
|
|
|
return
|
|
|
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
|
from paddlespeech.s2t.modules import align
|
|
|
|
align.global_init_type = None
|