|
|
# 菜品分类器 2
|
|
|
|
|
|
在第二节课程中,您将探索更多方法来对数值数据进行分类。您还将了解选择不同的分类器所带来的结果。
|
|
|
|
|
|
## [课前测验](https://white-water-09ec41f0f.azurestaticapps.net/quiz/23/)
|
|
|
|
|
|
### 先决条件
|
|
|
|
|
|
我们假设您已经完成了前面的课程,并且在本次课程文件夹根路径下的 `data` 文件夹中有一个经过清洗的名为 cleaned_cuisines.csv 数据集。
|
|
|
|
|
|
### 准备工作
|
|
|
|
|
|
我们已经将清洗过的数据集加载进您的 _notebook.ipynb_ 文件,并分为 X 和 Y dataframe,为模型构建过程做好准备。
|
|
|
|
|
|
## 分类学习路线图
|
|
|
|
|
|
在此之前,您已经了解使用 Microsoft 速查表对数据进行分类时可以使用到的各种选项。Scikit-learn 提供了一个类似的,但更细粒度的速查表,可以进一步帮助您调整估计器(分类器的另一个术语):
|
|
|
|
|
|
![来自 Scikit-learn 的机器学习路线图 ](../images/map.png)
|
|
|
> 提示:[在线查看路线图](https://scikit-learn.org/stable/tutorial/machine_learning_map/)并沿着路线阅读文档。
|
|
|
|
|
|
### 计划
|
|
|
|
|
|
一旦您清楚了解了您的数据,这张路线图就非常有用,因为您可以沿着路线并做出决定:
|
|
|
|
|
|
- 我们有超过 50 个样本
|
|
|
- 我们想要预测一个类别
|
|
|
- 我们有标记过的数据
|
|
|
- 我们的样本数少于 100000
|
|
|
- ✨ 我们可以选择线性 SVC
|
|
|
- 如果那不起作用,既然我们有数值数据
|
|
|
- 我们可以尝试 ✨ K-近邻分类器
|
|
|
- 如果那不起作用,试试 ✨ SVC 和 ✨ 集成分类器
|
|
|
|
|
|
这是一条非常有用的线索。
|
|
|
|
|
|
## 练习 - 拆分数据
|
|
|
|
|
|
按照这个路线,我们应该从导入一些要使用的库来开始。
|
|
|
|
|
|
1. 导入需要的库:
|
|
|
|
|
|
```python
|
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
from sklearn.svm import SVC
|
|
|
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
|
|
|
from sklearn.model_selection import train_test_split, cross_val_score
|
|
|
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
|
|
|
import numpy as np
|
|
|
```
|
|
|
|
|
|
2. 拆分您的训练数据和测试数据:
|
|
|
|
|
|
```python
|
|
|
X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)
|
|
|
```
|
|
|
|
|
|
## 线性 SVC 分类器
|
|
|
|
|
|
支持向量分类(SVC)是机器学习方法支持向量机家族中的一个子类(参阅下方内容,学习更多相关知识)。用这种方法您可以选择一个 kernel 去决定如何聚类标签。C 参数指的是“正则化”,它将参数的影响正则化。kernel 可以是[其中](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)的一项;这里我们将 kernel 设置为 linear 来使用线性 SVC。probability 默认为 false,这里我们将其设置为 true 来收集概率估计。我们还将 random_state 设置为 0 去打乱数据来获得概率。
|
|
|
|
|
|
### 练习 - 使用线性 SVC
|
|
|
|
|
|
我们通过创建一个分类器数组来开始。在我们测试时您可以逐步向这个数组中添加分类器。
|
|
|
|
|
|
1. 从一个线性 SVC 开始:
|
|
|
|
|
|
```python
|
|
|
C = 10
|
|
|
# 创建不同的分类器
|
|
|
classifiers = {
|
|
|
'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0)
|
|
|
}
|
|
|
```
|
|
|
|
|
|
2. 使用线性 SVC 训练您的模型并打印报告:
|
|
|
|
|
|
```python
|
|
|
n_classifiers = len(classifiers)
|
|
|
|
|
|
for index, (name, classifier) in enumerate(classifiers.items()):
|
|
|
classifier.fit(X_train, np.ravel(y_train))
|
|
|
|
|
|
y_pred = classifier.predict(X_test)
|
|
|
accuracy = accuracy_score(y_test, y_pred)
|
|
|
print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))
|
|
|
print(classification_report(y_test,y_pred))
|
|
|
```
|
|
|
|
|
|
结果看上去不错:
|
|
|
|
|
|
```output
|
|
|
Accuracy (train) for Linear SVC: 78.6%
|
|
|
precision recall f1-score support
|
|
|
|
|
|
chinese 0.71 0.67 0.69 242
|
|
|
indian 0.88 0.86 0.87 234
|
|
|
japanese 0.79 0.74 0.76 254
|
|
|
korean 0.85 0.81 0.83 242
|
|
|
thai 0.71 0.86 0.78 227
|
|
|
|
|
|
accuracy 0.79 1199
|
|
|
macro avg 0.79 0.79 0.79 1199
|
|
|
weighted avg 0.79 0.79 0.79 1199
|
|
|
```
|
|
|
|
|
|
## K-近邻分类器
|
|
|
|
|
|
K-近邻是机器学习方法最近邻家族的一部分,可以用来进行有监督和无监督学习。这种方法创建了预定个数的点,并且数据被聚集在这些点的四周,这样数据的大致标签可以被预测出来。
|
|
|
|
|
|
### 练习 - 使用 K-近邻分类器
|
|
|
|
|
|
前面的分类器都很不错,并且能在数据集上起作用,但是我们可能需要更好的精度。来试试 K-近邻分类器。
|
|
|
|
|
|
1. 给您的分类器数组添加一行(在线性 SVC 分类器后添加逗号):
|
|
|
|
|
|
```python
|
|
|
'KNN classifier': KNeighborsClassifier(C),
|
|
|
```
|
|
|
|
|
|
结果有点糟糕:
|
|
|
|
|
|
```output
|
|
|
Accuracy (train) for KNN classifier: 73.8%
|
|
|
precision recall f1-score support
|
|
|
|
|
|
chinese 0.64 0.67 0.66 242
|
|
|
indian 0.86 0.78 0.82 234
|
|
|
japanese 0.66 0.83 0.74 254
|
|
|
korean 0.94 0.58 0.72 242
|
|
|
thai 0.71 0.82 0.76 227
|
|
|
|
|
|
accuracy 0.74 1199
|
|
|
macro avg 0.76 0.74 0.74 1199
|
|
|
weighted avg 0.76 0.74 0.74 1199
|
|
|
```
|
|
|
|
|
|
✅ 了解 [K-近邻](https://scikit-learn.org/stable/modules/neighbors.html#neighbors)
|
|
|
|
|
|
## Support Vector 分类器
|
|
|
|
|
|
Support-Vector 分类器是机器学习方法[支持向量机](https://wikipedia.org/wiki/Support-vector_machine)家族的一部分,被用于分类和回归任务。为了最大化两个类别之间的距离,支持向量机将“训练样例映射为空间中不同的点”。然后数据被映射为距离,所以它们的类别可以得到预测。
|
|
|
|
|
|
### 练习 - 使用 Support Vector 分类器
|
|
|
|
|
|
为了更好的精度,我们尝试 Support Vector 分类器。
|
|
|
|
|
|
1. 在 K-近邻分类器后添加逗号,然后添加下面一行:
|
|
|
|
|
|
```python
|
|
|
'SVC': SVC(),
|
|
|
```
|
|
|
|
|
|
结果相当不错!
|
|
|
|
|
|
```output
|
|
|
Accuracy (train) for SVC: 83.2%
|
|
|
precision recall f1-score support
|
|
|
|
|
|
chinese 0.79 0.74 0.76 242
|
|
|
indian 0.88 0.90 0.89 234
|
|
|
japanese 0.87 0.81 0.84 254
|
|
|
korean 0.91 0.82 0.86 242
|
|
|
thai 0.74 0.90 0.81 227
|
|
|
|
|
|
accuracy 0.83 1199
|
|
|
macro avg 0.84 0.83 0.83 1199
|
|
|
weighted avg 0.84 0.83 0.83 1199
|
|
|
```
|
|
|
|
|
|
✅ 了解 [Support-Vectors](https://scikit-learn.org/stable/modules/svm.html#svm)
|
|
|
|
|
|
## 集成分类器
|
|
|
|
|
|
尽管之前的测试结果相当不错,我们还是沿着路线走到最后吧。我们来尝试一些集成分类器,特别是随机森林和 AdaBoost:
|
|
|
|
|
|
```python
|
|
|
'RFST': RandomForestClassifier(n_estimators=100),
|
|
|
'ADA': AdaBoostClassifier(n_estimators=100)
|
|
|
```
|
|
|
|
|
|
结果非常好,尤其是随机森林方法的:
|
|
|
|
|
|
```output
|
|
|
Accuracy (train) for RFST: 84.5%
|
|
|
precision recall f1-score support
|
|
|
|
|
|
chinese 0.80 0.77 0.78 242
|
|
|
indian 0.89 0.92 0.90 234
|
|
|
japanese 0.86 0.84 0.85 254
|
|
|
korean 0.88 0.83 0.85 242
|
|
|
thai 0.80 0.87 0.83 227
|
|
|
|
|
|
accuracy 0.84 1199
|
|
|
macro avg 0.85 0.85 0.84 1199
|
|
|
weighted avg 0.85 0.84 0.84 1199
|
|
|
|
|
|
Accuracy (train) for ADA: 72.4%
|
|
|
precision recall f1-score support
|
|
|
|
|
|
chinese 0.64 0.49 0.56 242
|
|
|
indian 0.91 0.83 0.87 234
|
|
|
japanese 0.68 0.69 0.69 254
|
|
|
korean 0.73 0.79 0.76 242
|
|
|
thai 0.67 0.83 0.74 227
|
|
|
|
|
|
accuracy 0.72 1199
|
|
|
macro avg 0.73 0.73 0.72 1199
|
|
|
weighted avg 0.73 0.72 0.72 1199
|
|
|
```
|
|
|
|
|
|
✅ 学习[集成分类器](https://scikit-learn.org/stable/modules/ensemble.html)
|
|
|
|
|
|
这种机器学习方法"组合了各种基本估计器的预测"来提高模型质量。在我们的示例中,我们使用随机森林和 AdaBoost。
|
|
|
|
|
|
- [随机森林](https://scikit-learn.org/stable/modules/ensemble.html#forest)是一种平均化方法,它建立了一个注入了随机性的“决策树森林”以避免过度拟合。n_estimators 参数设置了随机森林中树的数量。
|
|
|
|
|
|
- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) 在数据集上拟合一个分类器,然后在同一数据集上拟合分类器的额外副本。它关注并调整错误分类实例的权重,以便后续的分类器更多地关注和修正。
|
|
|
|
|
|
---
|
|
|
|
|
|
## 🚀挑战
|
|
|
|
|
|
这些技术方法每个都有很多能够让您微调的参数。研究每一个的默认参数,并思考调整这些参数对模型质量有何意义。
|
|
|
|
|
|
## [课后测验](https://white-water-09ec41f0f.azurestaticapps.net/quiz/24/)
|
|
|
|
|
|
## 回顾与自学
|
|
|
|
|
|
课程中出现了很多术语,花点时间浏览[术语表](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-15963-cxa)来复习一下它们吧!
|
|
|
|
|
|
## 作业
|
|
|
|
|
|
[玩转参数](../translations/assignment.zh-cn.md)
|