You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/pa/README.md

35 KiB

GitHub license
GitHub contributors
GitHub issues
GitHub pull-requests
PRs Welcome

GitHub watchers
GitHub forks
GitHub stars

🌐 ਬਹੁ-ਭਾਸ਼ਾ ਸਹਾਇਤਾ

GitHub Action ਰਾਹੀਂ ਸਹਾਇਕ (ਆਟੋਮੈਟਿਕ ਅਤੇ ਹਮੇਸ਼ਾ ਅਪ-ਟੂ-ਡੇਟ)

French | Spanish | German | Russian | Arabic | Persian (Farsi) | Urdu | Chinese (Simplified) | Chinese (Traditional, Macau) | Chinese (Traditional, Hong Kong) | Chinese (Traditional, Taiwan) | Japanese | Korean | Hindi | Bengali | Marathi | Nepali | Punjabi (Gurmukhi) | Portuguese (Portugal) | Portuguese (Brazil) | Italian | Polish | Turkish | Greek | Thai | Swedish | Danish | Norwegian | Finnish | Dutch | Hebrew | Vietnamese | Indonesian | Malay | Tagalog (Filipino) | Swahili | Hungarian | Czech | Slovak | Romanian | Bulgarian | Serbian (Cyrillic) | Croatian | Slovenian | Ukrainian | Burmese (Myanmar)

ਸਾਡੇ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ

Azure AI Discord

ਸਾਡੇ Discord 'Learn with AI' ਸੀਰੀਜ਼ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, 18 - 30 ਸਤੰਬਰ, 2025 ਤੱਕ। ਤੁਸੀਂ GitHub Copilot ਨੂੰ ਡਾਟਾ ਸਾਇੰਸ ਲਈ ਵਰਤਣ ਦੇ ਟਿਪਸ ਅਤੇ ਟ੍ਰਿਕਸ ਸਿੱਖ ਸਕਦੇ ਹੋ।

Learn with AI series

ਸ਼ੁਰੂਆਤੀ ਲਈ ਮਸ਼ੀਨ ਲਰਨਿੰਗ - ਇੱਕ ਪਾਠਕ੍ਰਮ

🌍 ਦੁਨੀਆ ਦੇ ਸੱਭਿਆਚਾਰਾਂ ਰਾਹੀਂ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਦੀ ਖੋਜ ਕਰਦੇ ਹੋਏ ਦੁਨੀਆ ਦਾ ਦੌਰਾ ਕਰੋ 🌍

Microsoft ਦੇ Cloud Advocates ਨੇ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਬਾਰੇ 12 ਹਫ਼ਤਿਆਂ, 26 ਪਾਠਾਂ ਦਾ ਪਾਠਕ੍ਰਮ ਪੇਸ਼ ਕਰਨ ਵਿੱਚ ਖੁਸ਼ੀ ਮਹਿਸੂਸ ਕੀਤੀ ਹੈ। ਇਸ ਪਾਠਕ੍ਰਮ ਵਿੱਚ, ਤੁਸੀਂ ਕਲਾਸਿਕ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਬਾਰੇ ਸਿੱਖੋਗੇ, ਮੁੱਖ ਤੌਰ 'ਤੇ Scikit-learn ਲਾਇਬ੍ਰੇਰੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਅਤੇ ਡੀਪ ਲਰਨਿੰਗ ਤੋਂ ਬਚਦੇ ਹੋਏ, ਜੋ ਸਾਡੇ AI for Beginners' ਪਾਠਕ੍ਰਮ ਵਿੱਚ ਸ਼ਾਮਲ ਹੈ। ਇਸ ਨੂੰ ਸਾਡੇ 'Data Science for Beginners' ਪਾਠਕ੍ਰਮ ਨਾਲ ਜੋੜੋ।

ਸਾਡੇ ਨਾਲ ਦੁਨੀਆ ਦਾ ਦੌਰਾ ਕਰੋ ਜਦੋਂ ਅਸੀਂ ਕਲਾਸਿਕ ਤਕਨੀਕਾਂ ਨੂੰ ਦੁਨੀਆ ਦੇ ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਦੇ ਡਾਟਾ 'ਤੇ ਲਾਗੂ ਕਰਦੇ ਹਾਂ। ਹਰ ਪਾਠ ਵਿੱਚ ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਅਦ ਦੇ ਕਵਿਜ਼, ਪਾਠ ਪੂਰਾ ਕਰਨ ਲਈ ਲਿਖਤ ਨਿਰਦੇਸ਼, ਇੱਕ ਹੱਲ, ਇੱਕ ਅਸਾਈਨਮੈਂਟ, ਅਤੇ ਹੋਰ ਬਹੁਤ ਕੁਝ ਸ਼ਾਮਲ ਹੈ। ਸਾਡੇ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪੈਡਾਗੌਜੀ ਤੁਹਾਨੂੰ ਸਿੱਖਣ ਦੇ ਦੌਰਾਨ ਬਣਾਉਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਨਵੀਆਂ ਹੁਨਰਾਂ ਨੂੰ 'ਚਿਪਕਾਉਣ' ਦਾ ਸਾਬਤ ਤਰੀਕਾ ਹੈ।

✍️ ਸਾਡੇ ਲੇਖਕਾਂ ਨੂੰ ਦਿਲੋਂ ਧੰਨਵਾਦ Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu ਅਤੇ Amy Boyd

🎨 ਸਾਡੇ ਚਿੱਤਰਕਾਰਾਂ ਨੂੰ ਵੀ ਧੰਨਵਾਦ Tomomi Imura, Dasani Madipalli, ਅਤੇ Jen Looper

🙏 ਵਿਸ਼ੇਸ਼ ਧੰਨਵਾਦ 🙏 Microsoft Student Ambassador ਲੇਖਕਾਂ, ਸਮੀਖਾਕਾਰਾਂ, ਅਤੇ ਸਮੱਗਰੀ ਯੋਗਦਾਨਕਰਤਾਵਾਂ ਨੂੰ, ਖਾਸ ਤੌਰ 'ਤੇ Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, ਅਤੇ Snigdha Agarwal

🤩 ਵਾਧੂ ਧੰਨਵਾਦ Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi, ਅਤੇ Vidushi Gupta ਨੂੰ ਸਾਡੇ R ਪਾਠਾਂ ਲਈ!

ਸ਼ੁਰੂਆਤ ਕਰਨਾ

ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰੋ:

  1. Repository ਨੂੰ Fork ਕਰੋ: ਇਸ ਪੇਜ ਦੇ ਉੱਪਰ-ਸੱਜੇ ਕੋਨੇ ਵਿੱਚ "Fork" ਬਟਨ 'ਤੇ ਕਲਿਕ ਕਰੋ।
  2. Repository ਨੂੰ Clone ਕਰੋ: git clone https://github.com/microsoft/ML-For-Beginners.git

ਇਸ ਕੋਰਸ ਲਈ ਸਾਰੇ ਵਾਧੂ ਸਰੋਤ Microsoft Learn ਕਲੈਕਸ਼ਨ ਵਿੱਚ ਲੱਭੋ

ਵਿਦਿਆਰਥੀ, ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਵਰਤਣ ਲਈ, ਪੂਰੇ ਰਿਪੋਜ਼ਟਰੀ ਨੂੰ ਆਪਣੇ GitHub ਖਾਤੇ ਵਿੱਚ Fork ਕਰੋ ਅਤੇ ਅਭਿਆਸਾਂ ਨੂੰ ਆਪਣੇ ਆਪ ਜਾਂ ਇੱਕ ਸਮੂਹ ਨਾਲ ਪੂਰਾ ਕਰੋ:

  • ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਕਵਿਜ਼ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ।
  • ਪਾਠ ਪੜ੍ਹੋ ਅਤੇ ਗਤੀਵਿਧੀਆਂ ਪੂਰੀ ਕਰੋ, ਹਰ ਗਿਆਨ ਜਾਂਚ 'ਤੇ ਰੁਕਦੇ ਹੋਏ ਅਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹੋਏ।
  • ਪਾਠਾਂ ਨੂੰ ਸਮਝ ਕੇ ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਨਾ ਕਿ ਹੱਲ ਕੋਡ ਚਲਾਉਣ ਦੀ; ਹਾਲਾਂਕਿ ਉਹ ਕੋਡ /solution ਫੋਲਡਰ ਵਿੱਚ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠਾਂ ਵਿੱਚ ਉਪਲਬਧ ਹੈ।
  • ਪਾਠ ਤੋਂ ਬਾਅਦ ਕਵਿਜ਼ ਲਓ।
  • ਚੁਣੌਤੀ ਪੂਰੀ ਕਰੋ।
  • ਅਸਾਈਨਮੈਂਟ ਪੂਰੀ ਕਰੋ।
  • ਪਾਠ ਸਮੂਹ ਪੂਰਾ ਕਰਨ ਤੋਂ ਬਾਅਦ, Discussion Board 'ਤੇ ਜਾਓ ਅਤੇ "ਜਾਣਕਾਰੀ ਸਾਂਝੀ ਕਰੋ" ਦੁਆਰਾ ਉਚਿਤ PAT ਰੂਬ੍ਰਿਕ ਭਰੋ। PAT ਇੱਕ ਪ੍ਰਗਤੀ ਮੁਲਾਂਕਣ ਸੰਦ ਹੈ ਜੋ ਇੱਕ ਰੂਬ੍ਰਿਕ ਹੈ ਜਿਸ ਨੂੰ ਤੁਸੀਂ ਆਪਣੀ ਸਿੱਖਣ ਨੂੰ ਹੋਰ ਅੱਗੇ ਵਧਾਉਣ ਲਈ ਭਰਦੇ ਹੋ। ਤੁਸੀਂ ਹੋਰ PATs 'ਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਵੀ ਦੇ ਸਕਦੇ ਹੋ ਤਾਂ ਕਿ ਅਸੀਂ ਇਕੱਠੇ ਸਿੱਖ ਸਕੀਏ।

ਹੋਰ ਅਧਿਐਨ ਲਈ, ਅਸੀਂ ਇਹ Microsoft Learn ਮੋਡਿਊਲ ਅਤੇ ਸਿੱਖਣ ਦੇ ਰਾਹਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨ ਦੀ ਸਿਫਾਰਸ਼ ਕਰਦੇ ਹਾਂ।

ਅਧਿਆਪਕ, ਅਸੀਂ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਵਰਤਣ ਲਈ ਕੁਝ ਸੁਝਾਅ ਸ਼ਾਮਲ ਕੀਤੇ ਹਨ


ਵੀਡੀਓ ਵਾਕਥਰੂ

ਕੁਝ ਪਾਠ ਛੋਟੇ ਰੂਪ ਦੇ ਵੀਡੀਓ ਵਜੋਂ ਉਪਲਬਧ ਹਨ। ਤੁਸੀਂ ਇਹ ਸਾਰੇ ਪਾਠਾਂ ਵਿੱਚ ਲਾਈਨ ਵਿੱਚ ਲੱਭ ਸਕਦੇ ਹੋ, ਜਾਂ Microsoft Developer YouTube ਚੈਨਲ 'ਤੇ ML for Beginners ਪਲੇਲਿਸਟ 'ਤੇ ਕਲਿਕ ਕਰਕੇ ਹਾਸਲ ਕਰ ਸਕਦੇ ਹੋ।

ML for beginners banner


ਟੀਮ ਨਾਲ ਮਿਲੋ

Promo video

Gif by Mohit Jaisal

🎥 ਉੱਪਰ ਦਿੱਤੀ ਤਸਵੀਰ 'ਤੇ ਕਲਿਕ ਕਰੋ ਪ੍ਰੋਜੈਕਟ ਅਤੇ ਇਸ ਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਲੋਕਾਂ ਬਾਰੇ ਵੀਡੀਓ ਦੇਖਣ ਲਈ!


ਪੈਡਾਗੌਜੀ

ਅਸੀਂ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਬਣਾਉਣ ਦੌਰਾਨ ਦੋ ਪੈਡਾਗੌਜੀਕਲ ਸਿਧਾਂਤਾਂ ਨੂੰ ਚੁਣਿਆ ਹੈ: ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਇਹ ਹੱਥ-ਅਧਾਰਿਤ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਹੈ ਅਤੇ ਇਹ ਅਕਸਰ ਕਵਿਜ਼ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ, ਇਸ ਪਾਠਕ੍ਰਮ ਵਿੱਚ ਇੱਕ ਸਾਂਝੀ ਥੀਮ ਹੈ ਜੋ ਇਸ ਨੂੰ ਇਕੱਠਾ ਰੱਖਦੀ ਹੈ।

ਸੁਨਿਸ਼ਚਿਤ ਕਰਕੇ ਕਿ ਸਮੱਗਰੀ ਪ੍ਰੋਜੈਕਟਾਂ ਨਾਲ ਸੰਗਤ ਰੱਖਦੀ ਹੈ, ਪ੍ਰਕਿਰਿਆ ਵਿਦਿਆਰਥੀਆਂ ਲਈ ਹੋਰ ਰੁਚਿਕਰ ਬਣਾਈ ਜਾਂਦੀ ਹੈ ਅਤੇ ਧਾਰਨਾਵਾਂ ਦੀ ਰਿਟੇਨਸ਼ਨ ਵਧਾਈ ਜਾਂਦੀ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ, ਕਲਾਸ ਤੋਂ ਪਹਿਲਾਂ ਇੱਕ ਘੱਟ-ਦਬਾਅ ਵਾਲਾ ਕਵਿਜ਼ ਵਿਦਿਆਰਥੀ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇ ਸਿੱਖਣ ਵੱਲ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਸੈਟ ਕਰਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਕਲਾਸ ਤੋਂ ਬਾਅਦ ਦੂਜਾ ਕਵਿਜ਼ ਹੋਰ ਰਿਟੇਨਸ਼ਨ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਪਾਠਕ੍ਰਮ ਲਚਕਦਾਰ ਅਤੇ ਮਜ਼ੇਦਾਰ ਬਣਾਇਆ ਗਿਆ ਸੀ ਅਤੇ ਇਸਨੂੰ ਪੂਰੇ ਜਾਂ ਅੰਸ਼ਿਕ ਤੌਰ 'ਤੇ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੋਜੈਕਟ ਛੋਟੇ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ ਅਤੇ 12 ਹਫ਼ਤਿਆਂ ਦੇ ਚੱਕਰ ਦੇ ਅੰਤ ਤੱਕ ਵਧਦੇ ਹਨ। ਇਸ ਪਾਠਕ੍ਰਮ ਵਿੱਚ ML ਦੇ ਅਸਲ-ਦੁਨੀਆ ਦੇ ਐਪਲੀਕੇਸ਼ਨਾਂ 'ਤੇ ਇੱਕ ਪੋਸਟਸਕ੍ਰਿਪਟ ਵੀ ਸ਼ਾਮਲ ਹੈ, ਜਿਸਨੂੰ ਵਾਧੂ ਕਰੈਡਿਟ ਜਾਂ ਚਰਚਾ ਦੇ ਆਧਾਰ ਵਜੋਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਸਾਡਾ Code of Conduct, Contributing, ਅਤੇ Translation ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ ਲੱਭੋ। ਅਸੀਂ ਤੁਹਾਡੇ ਰਚਨਾਤਮਕ ਫੀਡਬੈਕ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ!

ਹਰ ਪਾਠ ਵਿੱਚ ਸ਼ਾਮਲ ਹੈ

ਭਾਸ਼ਾਵਾਂ ਬਾਰੇ ਇੱਕ ਨੋਟ: ਇਹ ਪਾਠ ਮੁੱਖ ਤੌਰ 'ਤੇ Python ਵਿੱਚ ਲਿਖੇ ਗਏ ਹਨ, ਪਰ ਬਹੁਤ ਸਾਰੇ R ਵਿੱਚ ਵੀ ਉਪਲਬਧ ਹਨ। R ਪਾਠ ਪੂਰਾ ਕਰਨ ਲਈ, /solution ਫੋਲਡਰ ਵਿੱਚ ਜਾਓ ਅਤੇ R ਪਾਠ ਲੱਭੋ। ਇਹ .rmd ਐਕਸਟੈਂਸ਼ਨ ਸ਼ਾਮਲ ਕਰਦੇ ਹਨ ਜੋ R Markdown ਫਾਈਲ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਜੋ code chunks (R ਜਾਂ ਹੋਰ ਭਾਸ਼ਾਵਾਂ ਦੇ) ਅਤੇ YAML header (ਜੋ ਆਉਟਪੁੱਟ ਫਾਰਮੈਟ ਜਿਵੇਂ PDF ਨੂੰ ਫਾਰਮੈਟ ਕਰਨ ਲਈ ਗਾਈਡ ਕਰਦਾ ਹੈ) ਨੂੰ Markdown document ਵਿੱਚ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਇਹ ਡਾਟਾ ਸਾਇੰਸ ਲਈ ਇੱਕ ਸ਼ਾਨਦਾਰ ਲੇਖਕ ਫਰੇਮਵਰਕ ਵਜੋਂ ਕੰਮ ਕਰਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਤੁਹਾਨੂੰ ਆਪਣੇ ਕੋਡ, ਇਸਦੀ ਆਉਟਪੁੱਟ, ਅਤੇ ਆਪਣੇ ਵਿਚਾਰਾਂ ਨੂੰ Markdown ਵਿੱਚ ਲਿਖਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ, R Markdown ਦਸਤਾਵੇਜ਼ਾਂ ਨੂੰ PDF, HTML, ਜਾਂ Word ਵਰਗੇ ਆਉਟਪੁੱਟ ਫਾਰਮੈਟਾਂ ਵਿੱਚ ਰੈਂਡਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਕਵਿਜ਼ ਬਾਰੇ ਇੱਕ ਨੋਟ: ਸਾਰੇ ਕਵਿਜ਼ Quiz App ਫੋਲਡਰ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ, ਕੁੱਲ 52 ਕਵਿਜ਼, ਹਰ ਇੱਕ ਵਿੱਚ ਤਿੰਨ ਪ੍ਰਸ਼ਨ। ਇਹ ਪਾਠਾਂ ਵਿੱਚ ਲਿੰਕ ਕੀਤੇ ਗਏ ਹਨ ਪਰ ਕਵਿਜ਼ ਐਪ ਨੂੰ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਚਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ; quiz-app ਫੋਲਡਰ ਵਿੱਚ ਨਿਰਦੇਸ਼ਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਹੋਸਟ ਕਰਨ ਜਾਂ Azure 'ਤੇ ਡਿਪਲੌਇ ਕਰਨ ਲਈ।

ਪਾਠ ਨੰਬਰ ਵਿਸ਼ਾ ਪਾਠ ਸਮੂਹ ਸਿੱਖਣ ਦੇ ਉਦੇਸ਼ ਲਿੰਕ ਕੀਤਾ ਪਾਠ ਲੇਖਕ
01 ਮਸ਼ੀਨ
03 ਨਿਆਂ ਅਤੇ ਮਸ਼ੀਨ ਲਰਨਿੰਗ Introduction ML ਮਾਡਲ ਬਣਾਉਣ ਅਤੇ ਲਾਗੂ ਕਰਨ ਵੇਲੇ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਨਿਆਂ ਦੇ ਗੰਭੀਰ ਦਾਰਸ਼ਨਿਕ ਮੁੱਦਿਆਂ ਬਾਰੇ ਕੀ ਸੋਚਣਾ ਚਾਹੀਦਾ ਹੈ? Lesson Tomomi
04 ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਲਈ ਤਕਨੀਕਾਂ Introduction ML ਮਾਡਲ ਬਣਾਉਣ ਲਈ ML ਖੋਜਕਰਤਿਆਂ ਦੁਆਰਾ ਕੀ ਤਕਨੀਕਾਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ? Lesson Chris and Jen
05 ਰਿਗ੍ਰੈਸ਼ਨ ਦਾ ਪਰਿਚਯ Regression ਰਿਗ੍ਰੈਸ਼ਨ ਮਾਡਲਾਂ ਲਈ Python ਅਤੇ Scikit-learn ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ PythonR Jen • Eric Wanjau
06 ਉੱਤਰੀ ਅਮਰੀਕੀ ਕੱਦੂ ਦੀਆਂ ਕੀਮਤਾਂ 🎃 Regression ML ਦੀ ਤਿਆਰੀ ਲਈ ਡਾਟਾ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਅਤੇ ਸਾਫ਼ ਕਰੋ PythonR Jen • Eric Wanjau
07 ਉੱਤਰੀ ਅਮਰੀਕੀ ਕੱਦੂ ਦੀਆਂ ਕੀਮਤਾਂ 🎃 Regression ਲੀਨੀਅਰ ਅਤੇ ਪੋਲੀਨੋਮਿਅਲ ਰਿਗ੍ਰੈਸ਼ਨ ਮਾਡਲ ਬਣਾਓ PythonR Jen and Dmitry • Eric Wanjau
08 ਉੱਤਰੀ ਅਮਰੀਕੀ ਕੱਦੂ ਦੀਆਂ ਕੀਮਤਾਂ 🎃 Regression ਲੌਜਿਸਟਿਕ ਰਿਗ੍ਰੈਸ਼ਨ ਮਾਡਲ ਬਣਾਓ PythonR Jen • Eric Wanjau
09 ਇੱਕ ਵੈੱਬ ਐਪ 🔌 Web App ਆਪਣੇ ਟ੍ਰੇਨ ਕੀਤੇ ਮਾਡਲ ਨੂੰ ਵਰਤਣ ਲਈ ਇੱਕ ਵੈੱਬ ਐਪ ਬਣਾਓ Python Jen
10 ਵਰਗੀਕਰਨ ਦਾ ਪਰਿਚਯ Classification ਆਪਣੇ ਡਾਟਾ ਨੂੰ ਸਾਫ਼ ਕਰੋ, ਤਿਆਰ ਕਰੋ, ਅਤੇ ਵਿਜੁਅਲਾਈਜ਼ ਕਰੋ; ਵਰਗੀਕਰਨ ਦਾ ਪਰਿਚਯ PythonR Jen and Cassie • Eric Wanjau
11 ਸੁਆਦਿਸ਼ਟ ਏਸ਼ੀਆਈ ਅਤੇ ਭਾਰਤੀ ਖਾਣੇ 🍜 Classification ਵਰਗੀਕਰਨ ਕਰਨ ਵਾਲੇ ਮਾਡਲਾਂ ਦਾ ਪਰਿਚਯ PythonR Jen and Cassie • Eric Wanjau
12 ਸੁਆਦਿਸ਼ਟ ਏਸ਼ੀਆਈ ਅਤੇ ਭਾਰਤੀ ਖਾਣੇ 🍜 Classification ਹੋਰ ਵਰਗੀਕਰਨ ਕਰਨ ਵਾਲੇ ਮਾਡਲ PythonR Jen and Cassie • Eric Wanjau
13 ਸੁਆਦਿਸ਼ਟ ਏਸ਼ੀਆਈ ਅਤੇ ਭਾਰਤੀ ਖਾਣੇ 🍜 Classification ਆਪਣੇ ਮਾਡਲ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇੱਕ ਰਿਕਮੈਂਡਰ ਵੈੱਬ ਐਪ ਬਣਾਓ Python Jen
14 ਕਲੱਸਟਰਿੰਗ ਦਾ ਪਰਿਚਯ Clustering ਆਪਣੇ ਡਾਟਾ ਨੂੰ ਸਾਫ਼ ਕਰੋ, ਤਿਆਰ ਕਰੋ, ਅਤੇ ਵਿਜੁਅਲਾਈਜ਼ ਕਰੋ; ਕਲੱਸਟਰਿੰਗ ਦਾ ਪਰਿਚਯ PythonR Jen • Eric Wanjau
15 ਨਾਈਜੀਰੀਆਈ ਸੰਗੀਤਕ ਰੁਚੀਆਂ ਦੀ ਖੋਜ 🎧 Clustering K-Means ਕਲੱਸਟਰਿੰਗ ਵਿਧੀ ਦੀ ਖੋਜ PythonR Jen • Eric Wanjau
16 ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਪ੍ਰੋਸੈਸਿੰਗ ਦਾ ਪਰਿਚਯ Natural language processing NLP ਬਾਰੇ ਮੁੱਢਲੀ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੋ ਅਤੇ ਇੱਕ ਸਧਾਰਨ ਬੋਟ ਬਣਾਓ Python Stephen
17 ਆਮ NLP ਕੰਮ Natural language processing ਭਾਸ਼ਾ ਸੰਰਚਨਾਵਾਂ ਨਾਲ ਨਿਪਟਣ ਵੇਲੇ ਲੋੜੀਂਦੇ ਆਮ ਕੰਮਾਂ ਨੂੰ ਸਮਝ ਕੇ ਆਪਣੀ NLP ਜਾਣਕਾਰੀ ਨੂੰ ਗਹਿਰਾ ਕਰੋ Python Stephen
18 ਅਨੁਵਾਦ ਅਤੇ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ ♥️ Natural language processing ਜੇਨ ਆਸਟਿਨ ਦੇ ਸਾਥ ਅਨੁਵਾਦ ਅਤੇ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ Python Stephen
19 ਯੂਰਪ ਦੇ ਰੋਮਾਂਟਿਕ ਹੋਟਲ ♥️ Natural language processing ਹੋਟਲ ਸਮੀਖਿਆਵਾਂ ਨਾਲ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ 1 Python Stephen
20 ਯੂਰਪ ਦੇ ਰੋਮਾਂਟਿਕ ਹੋਟਲ ♥️ Natural language processing ਹੋਟਲ ਸਮੀਖਿਆਵਾਂ ਨਾਲ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ 2 Python Stephen
21 ਸਮੇਂ ਦੀ ਲੜੀ ਅਨੁਮਾਨਕਰਨ ਦਾ ਪਰਿਚਯ Time series ਸਮੇਂ ਦੀ ਲੜੀ ਅਨੁਮਾਨਕਰਨ ਦਾ ਪਰਿਚਯ Python Francesca
22 ਵਿਸ਼ਵ ਦੀ ਬਿਜਲੀ ਦੀ ਵਰਤੋਂ - ARIMA ਨਾਲ ਸਮੇਂ ਦੀ ਲੜੀ ਅਨੁਮਾਨਕਰਨ Time series ARIMA ਨਾਲ ਸਮੇਂ ਦੀ ਲੜੀ ਅਨੁਮਾਨਕਰਨ Python Francesca
23 ਵਿਸ਼ਵ ਦੀ ਬਿਜਲੀ ਦੀ ਵਰਤੋਂ - SVR ਨਾਲ ਸਮੇਂ ਦੀ ਲੜੀ ਅਨੁਮਾਨਕਰਨ Time series Support Vector Regressor ਨਾਲ ਸਮੇਂ ਦੀ ਲੜੀ ਅਨੁਮਾਨਕਰਨ Python Anirban
24 ਰੀਇਨਫੋਰਸਮੈਂਟ ਲਰਨਿੰਗ ਦਾ ਪਰਿਚਯ Reinforcement learning Q-Learning ਨਾਲ ਰੀਇਨਫੋਰਸਮੈਂਟ ਲਰਨਿੰਗ ਦਾ ਪਰਿਚਯ Python Dmitry
25 ਪੀਟਰ ਨੂੰ ਭੇੜੇ ਤੋਂ ਬਚਾਓ! 🐺 Reinforcement learning ਰੀਇਨਫੋਰਸਮੈਂਟ ਲਰਨਿੰਗ ਜਿਮ Python Dmitry
Postscript ਅਸਲ ਦੁਨੀਆ ਦੇ ML ਦ੍ਰਿਸ਼ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ ML in the Wild ਕਲਾਸਿਕਲ ML ਦੇ ਦਿਲਚਸਪ ਅਤੇ ਖੁਲਾਸਾ ਕਰਨ ਵਾਲੇ ਅਸਲ ਦੁਨੀਆ ਦੇ ਐਪਲੀਕੇਸ਼ਨ Lesson Team
Postscript RAI ਡੈਸ਼ਬੋਰਡ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ML ਮਾਡਲ ਡੀਬੱਗਿੰਗ ML in the Wild ਜ਼ਿੰਮੇਵਾਰ AI ਡੈਸ਼ਬੋਰਡ ਕੰਪੋਨੈਂਟ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਵਿੱਚ ਮਾਡਲ ਡੀਬੱਗਿੰਗ Lesson Ruth Yakubu

ਇਸ ਕੋਰਸ ਲਈ ਸਾਰੇ ਵਾਧੂ ਸਰੋਤ Microsoft Learn ਕਲੈਕਸ਼ਨ ਵਿੱਚ ਲੱਭੋ

ਆਫਲਾਈਨ ਪਹੁੰਚ

ਤੁਸੀਂ Docsify ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਆਫਲਾਈਨ ਚਲਾ ਸਕਦੇ ਹੋ। ਇਸ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ, Docsify ਇੰਸਟਾਲ ਕਰੋ ਆਪਣੇ ਸਥਾਨਕ ਕੰਪਿਊਟਰ 'ਤੇ, ਅਤੇ ਫਿਰ ਇਸ ਰਿਪੋ ਦੇ ਰੂਟ ਫੋਲਡਰ ਵਿੱਚ docsify serve ਟਾਈਪ ਕਰੋ। ਵੈੱਬਸਾਈਟ ਤੁਹਾਡੇ localhost localhost:3000 'ਤੇ ਪੋਰਟ 3000 'ਤੇ ਸਰਵ ਕੀਤੀ ਜਾਵੇਗੀ।

PDFs

ਲਿੰਕਾਂ ਦੇ ਨਾਲ ਕੋਰਸ ਦਾ PDF ਇਥੇ ਲੱਭੋ।

🎒 ਹੋਰ ਕੋਰਸ

ਸਾਡੀ ਟੀਮ ਹੋਰ ਕੋਰਸ ਤਿਆਰ ਕਰਦੀ ਹੈ! ਜਾਚ ਕਰੋ:


ਅਸਵੀਕਰਤਾ:
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ Co-op Translator ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਹਾਲਾਂਕਿ ਅਸੀਂ ਸਹੀਤਾ ਲਈ ਯਤਨਸ਼ੀਲ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁੱਤੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਦਸਤਾਵੇਜ਼ ਦਾ ਮੂਲ ਰੂਪ ਇਸਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਅਧਿਕਾਰਤ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।